Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonic ester fluorides

Triethylamine (s. a. under SO2CI2) Carbonic acid ester fluorides... [Pg.49]

Silyl enol ethers are other ketone or aldehyde enolate equivalents and react with allyl carbonate to give allyl ketones or aldehydes 13,300. The transme-tallation of the 7r-allylpalladium methoxide, formed from allyl alkyl carbonate, with the silyl enol ether 464 forms the palladium enolate 465, which undergoes reductive elimination to afford the allyl ketone or aldehyde 466. For this reaction, neither fluoride anion nor a Lewis acid is necessary for the activation of silyl enol ethers. The reaction also proceed.s with metallic Pd supported on silica by a special method[301j. The ketene silyl acetal 467 derived from esters or lactones also reacts with allyl carbonates, affording allylated esters or lactones by using dppe as a ligand[302]... [Pg.352]

In contrast to phosphorus esters, sulfur esters are usually cleaved at the carbon-oxygen bond with carbon-fluorine bond formation Cleavage of esteri nf methanesulfonic acid, p-toluenesidfonic acid, and especially trifluoromethane-sulfonic acid (tnflic acid) by fluoride ion is the most widely used method for the conversion of hydroxy compounds to fluoro derivatives Potassium fluoride, triethylamine trihydrofluoride, and tetrabutylammonium fluoride are common sources of the fluoride ion For the cleavage of a variety of alkyl mesylates and tosylates with potassium fluoride, polyethylene glycol 400 is a solvent of choice, the yields are limited by solvolysis of the leaving group by the solvent, but this phenomenon is controlled by bulky substituents, either in the sulfonic acid part or in the alcohol part of the ester [42] (equation 29)... [Pg.211]

Notable examples of general synthetic procedures in Volume 47 include the synthesis of aromatic aldehydes (from dichloro-methyl methyl ether), aliphatic aldehydes (from alkyl halides and trimethylamine oxide and by oxidation of alcohols using dimethyl sulfoxide, dicyclohexylcarbodiimide, and pyridinum trifluoro-acetate the latter method is particularly useful since the conditions are so mild), carbethoxycycloalkanones (from sodium hydride, diethyl carbonate, and the cycloalkanone), m-dialkylbenzenes (from the />-isomer by isomerization with hydrogen fluoride and boron trifluoride), and the deamination of amines (by conversion to the nitrosoamide and thermolysis to the ester). Other general methods are represented by the synthesis of 1 J-difluoroolefins (from sodium chlorodifluoroacetate, triphenyl phosphine, and an aldehyde or ketone), the nitration of aromatic rings (with ni-tronium tetrafluoroborate), the reductive methylation of aromatic nitro compounds (with formaldehyde and hydrogen), the synthesis of dialkyl ketones (from carboxylic acids and iron powder), and the preparation of 1-substituted cyclopropanols (from the condensation of a 1,3-dichloro-2-propanol derivative and ethyl-... [Pg.144]

Some examples of conjugate addition reactions of allylic silanes are given in Scheme 9.5. Entries 1 to 3 illustrate the synthesis of several (3-allyl ketones. Note that Entry 2 involves the creation of a quaternary carbon. Entry 4 was used in the synthesis of a terpenoid ketone, (+)-nootkatone. Entry 5 illustrates fluoride-mediated addition using tetrabutylammonium fluoride. These conditions were found to be especially effective for unsaturated esters. In Entry 6, the addition is from the convex face of the ring system. Entry 7 illustrates a ring closure by intramolecular conjugate addition. [Pg.833]

Alternative paths for decomposition of the metal carboxylate can lead to ketones, acid anhydrides, esters, acid fluorides (1,11,22,68,77,78), and various coupling products (21,77,78), and aspects of these reactions have been reviewed (1,11). Competition from these routes is often substantial when thermal decomposition is carried out in the absence of a solvent (Section III,D), and their formation is attributable to homolytic pathways (11,21,77,78). Other alternative paths are reductive elimination rather than metal-carbon bond formation [Eq. (36)] (Section III,B) and formation of metal-oxygen rather than metal-carbon bonded compounds [e.g., Eqs. (107) (119) and (108) (120). Reactions (36) and (108) are reversible, and C02 activation (116) is involved in the reverse reactions (48,120). [Pg.267]

The preference for the /3-silyl isomer product complements methods available for hydrostannation of alkynes, for which the a-stannyl regioisomer is formed preferentially.70 7011 70c In addition, the /3-silyl products serve as the platform for a tertiary alcohol synthesis (Scheme 15). Upon treatment of vinylsilanes such as B with tetrabutylam-monium fluoride (TBAF) in DMF at 0 °C, a 1,2 carbon-to-silicon migration occurs, affording the tertiary heterosilane E. Oxidation of the C-Si bond then provides the tertiary alcohol. Good 1,2-diastereocontrol has been demonstrated for y-alkoxy substrates, as in the example shown. The studies suggest that the oxidation of the sterically demanding silane intermediate is facilitated by the intramolecular formation of a silyl hemiketal or silyllactone for ketone or ester substrates, respectively.71... [Pg.803]

The alkylation reaction is initiated by the activation of the alkene. With liquid acids, the alkene forms the corresponding ester. This reaction follows Markovnikov s rule, so that the acid is added to the most highly substituted carbon atom. With H2S04, mono- and di-alkyl sulfates are produced, and with HF alkyl fluorides are produced. Triflic acid (CF3S020H) behaves in the same way and forms alkyl triflates (24). These esters are stable at low temperatures and low acid/hydrocarbon ratios. With a large excess of acid, the esters may also be stabilized in the form of free carbenium ions and anions (Reaction (1)). [Pg.259]

Direct coupling of carbon nucleophiles with 1,3-dinitrobenzene is promoted by ultraviolet irradiation in the presence of quaternary ammonium fluorides, which can act not only as the base to generate the carbon nucleophile, but also as a proton transfer agent in the rearomatization step [83], The dinitrobenzene acts as the electron acceptor in the photochemical step. No reaction occurs in the absence of the fluoride and, surprisingly, although simple ketones, nitriles, esters and fl-kcto esters react, pentan-2,4-dione does not. [Pg.44]

Optimum yields of (3-vinyl-y-butyrolactols from the Pd(II) promoted reaction of vinyl triflates with Z-but-2-en-l,4-diol (Scheme 6.33) are attained when tetra-n-butylammonium chloride is added (47]. The lactol is conveniently oxidized to the lactone with celite-supported silver carbonate. The corresponding arylbutyrolactols are obtained in high yield (70-80%) from an analogous reaction of iodoarenes with the enediol. The yields of 2-alkenyl-2,5-dihydrofurans, resulting from the Pd(0) catalysed reaction of cyclic alkynylcarbonates with acrylic esters via tandem C-C and C-0 bond forming reactions, are enhanced by the presence of tetra-n-butyl-ammonium fluoride (e.g. Scheme 6.33) (48]. [Pg.297]


See other pages where Carbonic ester fluorides is mentioned: [Pg.129]    [Pg.105]    [Pg.283]    [Pg.308]    [Pg.127]    [Pg.378]    [Pg.164]    [Pg.697]    [Pg.239]    [Pg.731]    [Pg.196]    [Pg.754]    [Pg.766]    [Pg.215]    [Pg.370]    [Pg.249]    [Pg.182]    [Pg.526]    [Pg.116]    [Pg.146]    [Pg.191]    [Pg.192]    [Pg.242]    [Pg.158]    [Pg.92]    [Pg.200]    [Pg.94]    [Pg.1544]    [Pg.208]    [Pg.85]    [Pg.95]    [Pg.125]    [Pg.258]    [Pg.40]    [Pg.448]   


SEARCH



Carbon fluorides

Carbonate esters

Carbonic esters

Fluoride carbonates

© 2024 chempedia.info