Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbonate synthesis, alcohol oxidative carbonylations, palladium

The oxidative carbonylation of alcohols and phenols to carbonates can be catalyzed by palladium or copper species [154-213]. This reaction is of particular practical importance, since it can be developed into an industrial process for the phosgene-free synthesis of dimethyl carbonate (DMC) and diphenyl carbonate (DPC), which are important industrial intermediates for the production of polycarbonates. Moreover, DMC can be used as an eco-friendly methylation and carbonylation agent [214,215]. The industrial production of DMC by oxidative carbonylation of methanol has been achieved by Enichem [216] and Ube [217]. [Pg.259]

The carbonylation of aryl halides with alcohols and amines catalysed by palladium complexes with triphenylphosphine ligand is the convergent and direct route to the synthesis of aromatic esters as well as aromatic amides. Even though these palladium complexes are widely employed as the best catalytic system, those catalysts are difficult to separate and reuse for the reaction without further processing. The major drawbacks are oxidation of triphenylphosphine to phosphine oxide, reduction of palladium complex to metal and termination of the catalytic cycle. The phosphine-free, thermally stable and air resistant catalyst (1) containing a carbon-palladium covalent bond (Figure 12.3) has been found to be a highly selective and efficient catalyst for the carbonylation of aryl iodides.[1]... [Pg.244]

The palladium(II)-catalyzed olefin carbonylation reaction was first reported more than 30 years ago in studies by Stille and co-workers and James et al. The reaction of carbon monoxide with cis- and tra 5-but-2-ene in methanol in the presence of palladium(II)-chloride and copper(II)-chloride yielded threo- and eryt/zro-3-methoxy-2-methyl-butanoate, respectively. The transformation that was based on the well-known Wacker process for oxidation of ethylene into acetaldehyde in water " is now broadly defined as the Pd(II)-catalyzed oxycarbonylation of the unsaturated carbon-carbon bonds. This domino reaction includes oxypalladation of alkenes, migratory insertion of carbon monoxide, and alkoxylation. Since the development of this process, several transformations mediated by palladium(II) compounds have been described. The direct oxidative bisfunctionalization of alkenes represents a powerful transformation in the field of chemical synthesis. Palladium(II)-promoted carbonylation of alkenes in the presence of water/alcohol may lead to alkyl carboxylic acids (hydrocarboxylation), diesters [bis(aIkoxycarbonyla-tion)], (3-alkoxy carboxylic acids (alkoxy-carboxylation), or (3-alkoxy esters (alkoxy-carbonylation or alkoxy-alkoxy-carbonylation). Particularly attractive features of these multitransformation processes include the following ... [Pg.421]


See other pages where Carbonate synthesis, alcohol oxidative carbonylations, palladium is mentioned: [Pg.212]    [Pg.280]    [Pg.371]    [Pg.421]    [Pg.10]    [Pg.274]    [Pg.120]   


SEARCH



Alcohols carbon

Alcohols carbonylation

Alcohols carbonylations

Alcohols oxidative carbonylation

Alcohols synthesis

Carbon synthesis

Carbonates synthesis

Carbonyl carbon

Carbonyl carbonate

Carbonyl oxidation

Carbonyl oxide

Carbonylation oxide

Carbonyls synthesis

Oxidation carbonylative

Oxidation oxidative carbonylation

Oxidation palladium

Oxidative carbonylation

Oxidative carbonylations

Oxidative carbonylations alcohols

Palladium carbonates

Palladium carbonylation

Palladium carbonylations

Palladium carbonyls

Palladium oxide

Palladium oxidized

Palladium synthesis

Synthesis carbonylation

© 2024 chempedia.info