Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon nucleophiles, carbocation reactivity

Alkoxycarbenium ions are important reactive intermediates in modem organic synthesis.28 It should be noted that other names such as oxonium ions, oxocarbenium ions, and carboxonium ions have also been used for carbocations stabilized by an adjacent oxygen atom and that we often draw structures having a carbon-oxygen double bond for this type of cations.2 Alkoxycarbenium ions are often generated from the corresponding acetals by treatment with Lewis acids in the presence of carbon nucleophiles. This type of reaction serves as efficient methods for carbon-carbon bond formation. [Pg.213]

So far we have added heteroatoms only—bromine, nitrogen, or sulfur. Adding carbon electrophiles requires reactive carbon electrophiles and that means carbocations. In Chapter 17 you learned that any nucleophile, however weak, will react with a carbocation in the S>jl reaction and even benzene rings will do this. The classic S>jl electrophile is the f-butyl cation generated from t-butanol with acid. [Pg.553]

Chapter 5 considers the relationship between mechanism and regio- and stereoselectivity. The reactivity patterns of electrophiles such as protic acids, halogens, sulfur and selenium electrophiles, mercuric ion, and borane and its derivatives are explored and compared. These reactions differ in the extent to which they proceed through discrete carbocations or bridged intermediates and this distinction can explain variations in regio- and stereochemistry. This chapter also describes the El, E2, and Elcb mechanisms for elimination and the idea that these represent specific cases within a continuum of mechanisms. The concept of the variable mechanism can explain trends in reactivity and regiochemistry in elimination reactions. Chapter 6 focuses on the fundamental properties and reactivity of carbon nucleophiles, including... [Pg.1209]

Thus with dihalocarbenes we have the interesting case of a species that resem bles both a carbanion (unshared pair of electrons on carbon) and a carbocation (empty p orbital) Which structural feature controls its reactivity s Does its empty p orbital cause It to react as an electrophile s Does its unshared pair make it nucleophilic s By compar mg the rate of reaction of CBi2 toward a series of alkenes with that of typical electrophiles toward the same alkenes (Table 14 4) we see that the reactivity of CBi2... [Pg.607]

In this section, the emphasis is on carbocation reactions that modify the carbon skeleton, including carbon-carbon bond formation, rearrangements, and fragmentation reactions. The fundamental structural and reactivity characteristics of carbocations toward nucleophilic substitution were explored in Chapter 4 of Part A. [Pg.862]

There are, however, serious problems that must be overcome in the application of this reaction to synthesis. The product is a new carbocation that can react further. Repetitive addition to alkene molecules leads to polymerization. Indeed, this is the mechanism of acid-catalyzed polymerization of alkenes. There is also the possibility of rearrangement. A key requirement for adapting the reaction of carbocations with alkenes to the synthesis of small molecules is control of the reactivity of the newly formed carbocation intermediate. Synthetically useful carbocation-alkene reactions require a suitable termination step. We have already encountered one successful strategy in the reaction of alkenyl and allylic silanes and stannanes with electrophilic carbon (see Chapter 9). In those reactions, the silyl or stannyl substituent is eliminated and a stable alkene is formed. The increased reactivity of the silyl- and stannyl-substituted alkenes is also favorable to the synthetic utility of carbocation-alkene reactions because the reactants are more nucleophilic than the product alkenes. [Pg.862]

A comparison of rate and equilibrium constants for partitioning of the cyclic carbocation [18+] with those for the l-(4-methylphenyl)ethyl carbocation Me-[6+] (Table 5) shows that placement of the cationic benzylic carbon in a five-membered ring results in the following complex changes in the reactivity of the carbocation towards deprotonation and nucleophilic addition of solvent (Scheme 15). [Pg.102]

The incorporation of a cationic benzylic carbon into a five-membered ring results in complex changes in the reactivity of the carbocation toward deprotonation and nucleophilic addition of solvent (Scheme 15). [Pg.112]

Compounds with a low HOMO and LUMO (Figure 5.5b) tend to be stable to selfreaction but are chemically reactive as Lewis acids and electrophiles. The lower the LUMO, the more reactive. Carbocations, with LUMO near a, are the most powerful acids and electrophiles, followed by boranes and some metal cations. Where the LUMO is the a of an H—X bond, the compound will be a Lowry-Bronsted acid (proton donor). A Lowry-Bronsted acid is a special case of a Lewis acid. Where the LUMO is the cr of a C—X bond, the compound will tend to be subject to nucleophilic substitution. Alkyl halides and other carbon compounds with good leaving groups are examples of this group. Where the LUMO is the n of a C=X bond, the compound will tend to be subject to nucleophilic addition. Carbonyls, imines, and nitriles exemplify this group. [Pg.97]

With tamoxifen, loss of the sulfate group cleaves the bond and yields a benzylic carbocation. In the case of diclofenac, the carbonyl carbon is reactive and can react with nucleophiles (Fig. 4.54), but the conjugate can also rearrange and yield a reactive, electrophilic aldehyde. [Pg.120]

Cationic polymerization of alkenes involves the formation of a reactive carbo-cationic species capable of inducing chain growth (propagation). The idea of the involvement of carbocations as intermediates in cationic polymerization was developed by Whitmore.5 Mechanistically, acid-catalyzed polymerization of alkenes can be considered in the context of electrophilic addition to the carbon-carbon double bond. Sufficient nucleophilicity and polarity of the alkene is necessary in its interaction with the initiating cationic species. The reactivity of alkenes in acid-catalyzed polymerization corresponds to the relative stability of the intermediate carbocations (tertiary > secondary > primary). Ethylene and propylene, consequently, are difficult to polymerize under acidic conditions. [Pg.735]

Swain and Scott found satisfactory correlations with Equation (27) which provided 5 values for a number of reactants. However, as indicated in Scheme 33, for the limited number of substrates conveniently studied,158,186 variations in 5 did not show a clearly discernible pattern (and no obvious correlation with reactivity). Moreover, Pearson and Songstad demonstrated that the correlations break down if extended to extremes of soft and hard electrophilic centers such as platinum, in the substitution of trara,s-[Pt(pyridine)2Cl2], or hydrogen in proton transfer reactions.255 Despite this, Swain and Scott s equation has stood the test of time and it is noteworthy that a serious breakdown in the correlations occurs only when the reacting atoms of both nucleophile and electrophile are varied. In this chapter we will restrict ourselves to carbon as an electrophilic center, and particularly, although not exclusively, to carbocations. [Pg.94]

Rough guidelines for the prediction of regioselectivity in epoxide ring openings are summarized in Scheme 4.60. Under neutral or basic reaction conditions alkyl-or aryl-substituted epoxides react with most nucleophiles at the less substituted carbon atom [248-253]. Under acidic reaction conditions, however, product mixtures or preferential attack at the most substituted carbon atom can be observed. Acids can usually be used to enhance the reactivity of epoxides and to promote substitution at the site of an epoxide which forms a carbocation more readily. [Pg.99]

Reactions of carbocations with free CN- occur preferentially at carbon, and not nitrogen as predicted by the principle of hard and soft acids and bases.69 Isocyano compounds (N-attack) are only formed with highly reactive carbocations where the reaction with cyanide occurs without an activation barrier because the diffusion limit has been reached. A study with the nitrite nucleophile led to a similar observation.70 This led to a conclusion that the ambident reactivity of nitrite in terms of charge control versus orbital control needs revision. In particular, it is proposed that SNl-type reactions of carbocations with nitrite only give kinetically controlled products when these reactions proceed without activation energy (i.e. are diffusion controlled). Activation controlled combinations are reversible and result in the thermodynamically more stable product. The kinetics of the reactions of benzhydrylium ions with alkoxides dissolved in the corresponding alcohols were determined.71 The order of nucleophilicities (OH- MeO- < EtO- < n-PrCT < / -PrO ) shows that alkoxides differ in reactivity only moderately, but are considerably more nucleophilic than hydroxide. [Pg.187]

Three-bonded carbon atoms are most likely reactive intermediates carbocations in reactions involving strong electrophiles, carbanions in reactions involving strong nucleophiles, and free radicals in radical reactions. If you draw condensed formulas... [Pg.1253]

Enamines are among the most powerful neutral nucleophiles and react spontaneously with alkyl halides. Silyl enol ethers are less reactive and so require a more potent electrophile to initiate reaction. Carbocations will do, and they can be generated in situ by abstraction of a halide or other leaving group from a saturated carbon centre by a Lewis acid. [Pg.674]


See other pages where Carbon nucleophiles, carbocation reactivity is mentioned: [Pg.30]    [Pg.261]    [Pg.163]    [Pg.53]    [Pg.402]    [Pg.46]    [Pg.68]    [Pg.275]    [Pg.354]    [Pg.16]    [Pg.192]    [Pg.284]    [Pg.278]    [Pg.26]    [Pg.200]    [Pg.79]    [Pg.105]    [Pg.402]    [Pg.100]    [Pg.204]    [Pg.47]    [Pg.82]    [Pg.242]    [Pg.427]    [Pg.172]   


SEARCH



Carbocations nucleophile

Carbocations reactivity

Carbon nucleophile

Carbon nucleophiles

Carbon nucleophiles, carbocation reactivity addition reactions

Carbon reactive

Carbon reactivity

Nucleophiles carbocation reactivity

Nucleophilic reactivity

Reactivity nucleophilicity

© 2024 chempedia.info