Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon-molecular oxygen reaction rate equations

Rate Equation for the Carbon-molecular Oxygen Reaction... [Pg.260]

The results of adsorption and desorption of CO mentioned above suggest that for the reaction at low temperature, the sites for relatively weakly chemisorbed CO are covered by the deposited carbon and the reaction occurs between molecularly adsorbed CO and oxygen on the carbon-free sites which are the sites for relatively strongly chemisorbed CO. Therefore, the definition of the turnover rate at 445 K remains as given in Equation 1. For the reaction at 518 K, however, this definition becomes inappropriate for the smaller particles. Indeed, to obtain the total number of Pd sites available for reaction, we now need to take into consideration the number Trp of CO molecules under the desorption peak. Furthermore, let us assume that disproportionation of CO takes place through reaction between two CO molecules adsorbed on two adjacent sites, and let us also assume that the coverage is unity for the CO molecules responsible for the LT desorption peak, since this was found to be approximately correct on 1.5 nm Pd on 1012 a-A O (1). Then, the number Np of palladium sites available for reaction at 518 K is given by HT/0 + NC0 LT s nce t ie co molecules under the LT desorption peak count only half of the available sites. Consequently, the turnover rate at 518 K should be defined as ... [Pg.435]

Fits of two principal reaction mechanisms, both of which have the above general form, were made, after initial trials of rate expressions corresponding to mechanisms with other forms of rate expression had resulted in the rejection of these forms. In the above equation the Molecular Adsorption Model (MAM) predicts n=2, m=l while the Dissociative Adsorption Model (DAM) leads to n=2, m=l/2. The two mechanisms differ in that MAM assumes that adsorbed molecular oxygen reacts with adsorbed carbon monoxide molecules, both of which reside on identical sites. Alternatively, the DAM assumes that the adsorbed oxygen molecules dissociate into atoms before reaction with the adsorbed carbon monoxide molecules, once more both residing on identical sites. The two concentration exponents, referred to as orders of reaction, are temperature independent and integral. All the other constants are temperature dependent and follow the Arrhenius relationship. These comprise lq, a catalytic rate constant, and two adsorption equilibrium constants K all subject to the constraints described in Chapter 9. Notice that a mechanistic rate expression always presumes that the rate is measured at constant volume. [Pg.228]


See other pages where Carbon-molecular oxygen reaction rate equations is mentioned: [Pg.257]    [Pg.945]    [Pg.1236]    [Pg.1236]    [Pg.4690]    [Pg.359]    [Pg.105]    [Pg.35]    [Pg.945]    [Pg.214]    [Pg.846]   


SEARCH



Carbon oxygenated

Carbon oxygenation

Carbon-molecular oxygen reaction

Molecular equations

Oxygen equations

Reaction equations

Reaction molecular

Reaction rate equation

Reactions molecular oxygen

© 2024 chempedia.info