Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon char-silicate layer

Nanocomposites refer to the combination of nanosized fillers (10 m diameter) with polymers, rather than the combination of polymer matrix (filled with nanoparticles) and fiber reinforcement The most popular fillers used as fire retardants are layered silicates. Loading of 10% or less (by weight) of such fillers significantly reduces peak heat release rates and facilitates greater char production [7]. The char layer provides a shielding effect for the composites below and the creation of char also reduces the toxicity of the combustion products, as less carbon is available to form the CO and CO2. [Pg.213]

The comprehensive flame retardation of polymer-clay nanocomposite materials was reported by Dr. Jeff Gilman and others at NIST [7]. They disclosed that both delaminated and intercalated nanoclays improve the flammability properties of polymer-layered silicate (clay) nanocomposites. In the study of the flame retardant effect of the nanodispersed clays, XRD and TEM analysis identified a nanoreinforced protective silicate/carbon-like high-performance char from the combustion residue that provided a physical mechanism of flammability control. The report also disclosed that The nanocomposite structure of the char appears to enhance the performance of the char layer. This char may act as an insulation and mass transport barrier showing the escape of the volatile products generated as the polymer decomposes. Cone calorimetry was used to study the flame retardation. The HRRs (heat release rates) of thermoplastic and thermoset polymer-layered silicate nanocomposites are reduced by 40% to 60% in delaminated or intercalated nanocomposites containing a silicate mass fraction of only 2% to 6%. On the basis of their expertise and experience in plastic flammability, they concluded that polymer-clay nanocomposites are very promising new flame-retarding polymers. In addition, they predict that the addition... [Pg.166]

As in the case of zeolite, the mechanism of action looks similar. No direct comparison can be made because MMT is a layered silicate compared to the cage structure of zeolite, and also because the carbonization agent is no longer a polyol but a char-forming polymer (PA6). Nevertheless, the main conclusion we can draw is that the action of the synergist (nanoclay or zeolite) is to stabilize in a first step the carbonaceous structure forming aluminophosphates and silicophosphates. With the nanoclay, this effect is only effective up to 310°C, whereas it is still efficient at 560°C with zeolite. To keep its protection efficient at high temperatures, the nanoclay permits the formation of protective ceramiclike material after collapse of the phosphocarbonaceous structure. Note that we did not detect any specific influence of the surfactant of the nanoclays, probably because of its low amount in the formulation. [Pg.146]


See other pages where Carbon char-silicate layer is mentioned: [Pg.113]    [Pg.113]    [Pg.58]    [Pg.114]    [Pg.115]    [Pg.115]    [Pg.116]    [Pg.93]    [Pg.777]    [Pg.793]    [Pg.84]    [Pg.242]    [Pg.117]    [Pg.186]   
See also in sourсe #XX -- [ Pg.113 ]




SEARCH



Carbon layers

Charring

Chars

Layer silicates

Layered silicate

© 2024 chempedia.info