Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenoid chiral

Chiral carbenoid complexes with 2,2 -bipyridine ligands for asymmetric synthesis 98YGK764. [Pg.219]

Whereas the utility of these methods has been amply documented, they are limited in the structures they can provide because of their dependence on the diazoacetate functionality and its unique chemical properties. Transfer of a simple, unsubstituted methylene would allow access to a more general subset of chiral cyclopropanes. However, attempts to utilize simple diazo compounds, such as diazomethane, have never approached the high selectivities observed with the related diazoacetates (Scheme 3.2) [4]. Traditional strategies involving rhodium [3a,c], copper [ 3b, 5] and palladium have yet to provide a solution to this synthetic problem. The most promising results to date involve the use of zinc carbenoids albeit with selectivities less than those obtained using the diazoacetates. [Pg.86]

These early studies on zinc carbenoids provide an excellent foundation for the development of an asymmetric process. The subsequent appearance of chiral auxiliary and reagent-based methods for the selective formation of cyclopropanes was an outgrowth of a clear understanding of the achiral process. However, the next important stage in the development of catalytic enantioselective cyclopropanations was elucidation of the structure of the Simmons-Smith reagent. [Pg.90]

An alternative approach to asymmetric synthesis that avoids covalent modification of the substrate is chiral modification of the active reagent. This not only streamlines the number of synthetic manipulations, but it simplifies the isolation of the desired product. In the case of zinc carbenoids, such modifications are feasible alternatives to the use of a standard chiral auxiliary. Two important factors combine... [Pg.115]

VAPOL ligand, chiral 25 f. carbenoid center 153 carbenoids 146... [Pg.480]

Catalysts of the Co(salen) family incorporating chiral centers on the ligand backbone are useful in asymmetric synthesis and the field has been reviewed.1377,1378 In two examples, the hydroxy-lation reaction (Equation (14)) involving (269) proceeds with 38% ee,1379 whereas the cyclo-propanation reaction with (271) (Equation (15)) proceeds with 75% ee and with 95 5 trans cis.1380 A Co(V) salen carbenoid intermediate has been suggested in these reactions. [Pg.117]

Enantioselective carbenoid cyclopropanation can be expected to occur when either an olefin bearing a chiral substituent, or such a diazo compound or a chiral catalyst is present. Only the latter alternative has been widely applied in practice. All efficient chiral catalysts which are known at present are copper or cobalt(II) chelates, whereas palladium complexes 86) proved to be uneflective. The carbenoid reactions between alkyl diazoacetates and styrene or 1,1 -diphenylethylene (Scheme 27) are usually chosen to test the efficiency of a chiral catalyst. As will be seen in the following, the extent to which optical induction is brought about by enantioselection either at a prochiral olefin or at a prochiral carbenoid center, varies widely with the chiral catalyst used. [Pg.159]

Copper chelates in which the ligands are rigid chiral p-diketonates of type 205 are responsible for the highest optical yields known in carbenoid cyclopropanation reactions 200). The cyclopropane 206 was even obtained enantiomerically pure from 2-diazodimedone and styrene in the presence of CuL (L = 205c). [Pg.164]

Use of a chiral diazo ester proved less rewarding in terms of enantioselective cyclopropanation. Only very low enantiomeric excesses were obtained when styrene was cyclopropanated with the carbenoid derived from diazoacetic esters 219 bearing a chiral ester residue 214). [Pg.171]

Diastereoface-differentiating reactions of a carbenoid with an alkene bearing an easily removable, chiral substituent have been used only ocassionally for the enantioselective production of a cyclopropane 216). A recent example is given by the cyclopropanation of the (—)-ephedrine-derived olefin 223 with CH2N2/Pd(OAc)2 after removal of the protecting group, (1/ , 2R )-2-phenylcyclopropane carbaldehyde was isolated with at least 90% e.e. 37). [Pg.172]

A ring enlargement process was used effectively to access the enantiopure pyrrolo [ 1,4]oxazepine-9a(7//)-carboxylate derivatives 142 and 143. The sequence involved copper (Il)-catalysed decomposition of an a-diazocarbonyl derivative attached to a chiral morpholinone, and a carbenoid, spiro-[5,6]-ammonium ylide, Stevens [1,2] rearrangement sequence. The Stevens and related rearrangements have considerable further potential for novel heterocyclic syntheses <00TA3449>. [Pg.370]

Activation of a C-H bond requires a metallocarbenoid of suitable reactivity and electrophilicity.105-115 Most of the early literature on metal-catalyzed carbenoid reactions used copper complexes as the catalysts.46,116 Several chiral complexes with Ce-symmetric ligands have been explored for selective C-H insertion in the last decade.117-127 However, only a few isolated cases have been reported of impressive asymmetric induction in copper-catalyzed C-H insertion reactions.118,124 The scope of carbenoid-induced C-H insertion expanded greatly with the introduction of dirhodium complexes as catalysts. Building on initial findings from achiral catalysts, four types of chiral rhodium(n) complexes have been developed for enantioselective catalysis in C-H activation reactions. They are rhodium(n) carboxylates, rhodium(n) carboxamidates, rhodium(n) phosphates, and < // < -metallated arylphosphine rhodium(n) complexes. [Pg.182]

Subsequently, Burgess and coworkers developed the chiral carbenoid ligands 32 (Scheme 29.10), which were structurally related to the JM-PHOS ligand [39, 40]. [Pg.1042]

An alternative to the synthesis of epoxides is the reaction of sulfur ylide with aldehydes and ketones.107 This is a carbon-carbon bond formation reaction and may offer a method complementary to the oxidative processes described thus far. The formation of sulfur ylide involves a chiral sulfide and a carbene or carbenoid, and the general reaction procedure for epoxidation of aldehydes may involve the application of a sulfide, an aldehyde, or a carbene precursor as well as a copper salt. This reaction may also be considered as a thiol acetal-mediated carbene addition to carbonyl groups in the aldehyde. [Pg.249]

Various approaches to epoxide also show promise for the preparation of chiral aziridines. Identification of the Cu(I) complex as the most effective catalyst for this process has raised the possibility that aziridination might share fundamental mechanistic features with olefin cyclopropanation.115 Similar to cyclo-propanation, in which the generally accepted mechanism involves a discrete Cu-carbenoid intermediate, copper-catalyzed aziridation might proceed via a discrete Cu-nitrenoid intermediate as well. [Pg.255]

Cyclopropanation reactions can be promoted using copper or rhodium catalysts or indeed systems based on other metals. As early as 1965 Nozaki showed that chiral copper complexes could promote asymmetric addition of a carbenoid species (derived from a diazoester) to an alkene. This pioneering study was embroidered by Aratani and co-workers who showed a highly enantioselective process could be obtained by modifying the chiral copper... [Pg.38]

Dirhodium(II) carboxylate catalysts have been used extensively for the catalysis of carbene insertions. In many cases, impressive selectivities have been achieved (19-21). In an effort to find selective catalysts for carbenoid insertions, Moody screened a series of dirhodium(II) carboxylate catalysts for their ability to catalyze carbenoid Si-H insertion (22). The authors surveyed the commercially available carboxylic acids, -10,000 of which are chiral. The members of this group that contained functionality that is incompatible to the reaction were culled out. The remaining chiral carboxylic acids (-2000 compounds) were then grouped into 80 different clusters. There is no discussion presented for the criteria used in the grouping of the acids. A representative acid from each cluster was then chosen for... [Pg.437]

Here an alkynyl sulfoxide 55 is first carbocuprated with an organocopper reagent 56 to provide a vinylcopper intermediate 57, which is then zinc homologated with the primary zinc sp3-carbenoid 58 to yield the allylzinc intermediate 59. This, in a spontaneous syw-/)-climination, gives the corresponding allene 60. This protocol could also be adopted to the preparation of chiral allenes. [Pg.192]


See other pages where Carbenoid chiral is mentioned: [Pg.181]    [Pg.97]    [Pg.108]    [Pg.111]    [Pg.116]    [Pg.116]    [Pg.121]    [Pg.122]    [Pg.122]    [Pg.123]    [Pg.126]    [Pg.146]    [Pg.328]    [Pg.329]    [Pg.249]    [Pg.73]    [Pg.209]    [Pg.219]    [Pg.583]    [Pg.56]    [Pg.167]    [Pg.197]    [Pg.178]    [Pg.182]    [Pg.184]    [Pg.188]    [Pg.1046]    [Pg.14]    [Pg.50]    [Pg.411]   
See also in sourсe #XX -- [ Pg.67 ]




SEARCH



Carbenoid

Carbenoids

© 2024 chempedia.info