Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbanions proton transfer

A different type of photoreaction in ILs has been studied by Jones and co-workers the photoreduction of benzophenones by primary amines. Prior work by Cohen demonstrated that photolysis of benzophe-none in benzene in the presence of sec-butylamine afforded benzopinacol (and an imine). This reaction proceeds through a radical pair formed by hydrogen-atom abstraction by the triplet excited state ben-zophenone from the amine. In the much more polar environment of an IL, the radical pair may instead undergo single electron transfer to form an iminium cation and a hydroxyl-substituted carbanion. Proton transfer from the cation to the anion will yield benzhydrol and an imine. [Pg.132]

Since the final proton transfer is essential for a successful condensation, it is important to understand what factors drive the proton transfer. Examine the electrostatic potential map of the carbanion, and draw all of the resonance contributors that are needed to describe this ion. How does this ion differ from the others Which product, if either, would be expected from the following condensation Explain. [Pg.172]

The cyanide ion plays an important role in this reaction, for it has three functions in addition to being a good nucleophile, its electron-withdrawing effect allows for the formation of the carbanion species by proton transfer, and it is a good leaving group. These features make the cyanide ion a specific catalyst for the benzoin condensation. [Pg.37]

Acrylamides represent still another interesting class of monomers.6 Their anionic polymerization may be initiated by strong bases, like, e.g., amides. The growing chain contains the unit —CH2—CH —CO—NH2 and intramolecular proton transfer competes efficiently with its carbanionic growth. Since the rearrangement... [Pg.181]

A reasonable mechanism is shown in equation 23 methyllithium attacks the sulfur atom, giving the secondary carbanion 36 by cleavage of the four-membered ring. A rapid proton transfer produces the sulfonyl-stabilized carbanion 37 which reacts with the added electrophile to give the product (equation 23)3. [Pg.768]

When the reaction is carried out in MeOH neither step (2), the formation of the carbanion (127), nor step (3), addition of this carbanion to the carbonyl carbon of the acceptor molecule (128), is completely rate-limiting in itself. These steps are followed by rapid proton transfer, (129)— (130), and, finally, by rapid loss of eCN—a good leaving group—i.e. reversal of cyanohydrin formation (cf. p. 212) on the product... [Pg.231]

Alternatively, some conclusions can be derived from the relative reactivities of car-banions. For example, DePuy and colleagues13 made use of a clever method involving reactions of silanes with hydroxide ion to deduce acidities of such weak acids as alkanes and ethylene. The silane reacts with hydroxide ion to form a pentacoordinate anion that ejects a carbanion held as a complex with the hydroxysilane rapid proton transfer gives the stable silanoxide ion and the carbon acid (equation 5). [Pg.736]

It was recognized in early examples of nucleophilic addition to acceptor-substituted allenes that formation of the non-conjugated product 158 is a kinetically controlled reaction. On the other hand, the conjugated product 159 is the result of a thermodynamically controlled reaction [205, 215]. Apparently, after the attack of the nucleophile on the central carbon atom of the allene 155, the intermediate 156 is formed first. This has to execute a torsion of 90° to merge into the allylic carbanion 157. Whereas 156 can only yield the product 158 by proton transfer, the protonation of 157 leads to both 158 and 159. [Pg.379]

Two types of electrogenerated carbon bases have commonly been used (1) dianions derived from activated alkenes, and (2) carbanions formed by reductive cleavage of halogen compounds or by direct reduction of weak carbon acids. In both cases, the efficiency of the proton transfer reaction relies on a thermodynamically favored proton transfer or a fast follow-up reaction of the deproto-nated substrate. [Pg.471]

The radical anion pathway (e-c-P-d-p Scheme 2) requires a rate-determining protonation after cyclization, i.e., a slow protonation of a hard oxyanion. However, such proton transfer rates are usually diffusion controlled, so this seems unlikely [32,33], On the other hand, the carbanion closure (e-P-d-c-p) portrayed in Scheme 4 requires a very reasonable suggestion that the ratedetermining step corresponds to protonation of the soft, weakly basic radical anion 42, prior to cyclization [32-35] this is the preferred mechanism. One must use caution, however, realizing that these conclusions are drawn for the particular set of substrates which were examined. In some cases, radical anion cyclization remains a viable option. [Pg.11]

It has been shown, by comparison of AGT j (gas phase) and kinetic acidities measured in MeONa-MeOH, that proton transfer to form a hydrogen-bonded carbanion and the subsequent breaking of that weak bond to form a free carbanion in MeOH may differ greatly even for compounds of comparable acidity, such as 9-phenylfluorene... [Pg.373]

Another approach to block copolymer is the mutual termination of a living cationic polymer with a living anionic polymer, but the efficiency of coupling is generally low because of proton transfer from the carbocation to the carbanion, resulting in two homopolymers instead of the block copolymer [Richards et al., 1978]. [Pg.443]

Kinetic Acidities in the Condensed Phase. For very weak acids, it is not always possible to establish proton-transfer equilibria in solution because the carbanions are too basic to be stable in the solvent system or the rate of establishing the equilibrium is too slow. In these cases, workers have turned to kinetic methods that rely on the assumption of a Brpnsted correlation between the rate of proton transfer and the acidity of the hydrocarbon. In other words, log k for isotope exchange is linearly related to the pK of the hydrocarbon (Eq. 13). The a value takes into account the fact that factors that stabilize a carbanion generally are only partially realized at the transition state for proton transfer (there is only partial charge development at that point) so the rate is less sensitive to structural effects than the pAT. As a result, a values are expected to be between zero and one. Once the correlation in Eq. 13 is established for species of known pK, the relationship can be used with kinetic data to extrapolate to values for species of unknown pAT. [Pg.94]

It is well known that base-induced elimination reactions can proceed either by a single, concerted step (E2), or by two steps, proton transfer and leaving group expulsion, with a carbanion intermediate (ElcB) to yield an alkene. " The... [Pg.97]

Although the living nature of anionic polymerization of styrene testifies to the relative stability of the carbanion at the chain end, observations indicate that it may undergo spontaneous transformations.182 Polystyryl sodium in THF was shown to undergo termination involving hydride elimination followed by proton transfer ... [Pg.742]


See other pages where Carbanions proton transfer is mentioned: [Pg.594]    [Pg.412]    [Pg.416]    [Pg.30]    [Pg.2]    [Pg.581]    [Pg.279]    [Pg.648]    [Pg.791]    [Pg.1310]    [Pg.648]    [Pg.83]    [Pg.39]    [Pg.74]    [Pg.485]    [Pg.30]    [Pg.417]    [Pg.87]    [Pg.71]    [Pg.95]    [Pg.96]    [Pg.102]    [Pg.103]    [Pg.110]    [Pg.168]    [Pg.172]    [Pg.606]    [Pg.992]    [Pg.727]    [Pg.24]    [Pg.131]   
See also in sourсe #XX -- [ Pg.373 , Pg.374 , Pg.375 ]

See also in sourсe #XX -- [ Pg.373 , Pg.374 , Pg.375 ]




SEARCH



Carbanions protonation

© 2024 chempedia.info