Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbamate oxidation

Scheme 17.37 Carbamate oxidation for the synthesis of methyl-L-callipeltose. Scheme 17.37 Carbamate oxidation for the synthesis of methyl-L-callipeltose.
Other hand, the attempted direct conversion of 52 into codeine by the cleavage of methyl ether with BBr3 resulted in the low yield formation of codeine. To improve this transformation, compound 52 was first converted into methyl carbamate. Oxidation of the carbamate with Se02 and t-BuOOH provided ketone 53. Finally, reduction of 53 with LiAlHi gave racemic codeine. [Pg.13]

The alkylurea 576 and oxamide 577 are formed by oxidative carbonylation of amines under CO pressure using Pd/C as a catalyst[518]. The urea formation proceeds under atmospheric pressure using PdCh and CuCl2[519]. The mono-and double carbonylations of / -aminoethanol (578 and 579) afford the cyclic carbamate (oxazolidinones) 580 and oxamide (morpholinediones) 581 [520,521]. [Pg.106]

Carbamates are produced by the oxidative carbonylation of amines in alcohol, and active research on the commercial production of carbamates as a precursor of isoyanates based on this reaction has been carried out. As an example, ethyl phenylcarbamate (582) is produced in a high yield (95%) with... [Pg.106]

Allylic acetates are widely used. The oxidative addition of allylic acetates to Pd(0) is reversible, and their reaction must be carried out in the presence of bases. An important improvement in 7r-allylpalladium chemistry has been achieved by the introduction of allylic carbonates. Carbonates are highly reactive. More importantly, their reactions can be carried out under neutral con-ditions[13,14]. Also reactions of allylic carbamates[14], allyl aryl ethers[6,15], and vinyl epoxides[16,17] proceed under neutral conditions without addition of bases. [Pg.292]

Carbamates such as Aldicarb undergo degradation under both aerobic and anaerobic conditions. Indeed the oxidation of the sulfur moiety to the sulfoxide and sulfone is part of the activation of the compound to its most potent form. Subsequent aerobic metaboHsm can completely mineralize the compound, although this process is usually relatively slow so that it is an effective iasecticide, acaricide and nematocide. Anaerobically these compounds are hydrolyzed, and then mineralized by methanogens (61). [Pg.35]

Final Purification. Oxygen containing compounds (CO, CO2, H2O) poison the ammonia synthesis catalyst and must be effectively removed or converted to inert species before entering the synthesis loop. Additionally, the presence of carbon dioxide in the synthesis gas can lead to the formation of ammonium carbamate, which can cause fouHng and stress-corrosion cracking in the compressor. Most plants use methanation to convert carbon oxides to methane. Cryogenic processes that are suitable for purification of synthesis gas have also been developed. [Pg.349]

The N-oxides of isoquinolines have proved to be excellent intermediates for the preparation of many compounds. Trialkylboranes give 1-alkyl derivatives (147). With cyanogen bromide in ethanol, ethyl N-(l- and 4-isoquinolyl)carbamates are formed (148). A compHcated but potentially important reaction is the formation of 1-acetonyLisoquinoline and 1-cyanoisoquinoline [1198-30-7] when isoquinoline N-oxide reacts with metbacrylonitrile in the presence of hydroquinone (149). Isoquinoline N-oxide undergoes direct acylamination with /V-benzoylanilinoisoquinoline salts to form 1-/V-benzoylanilinoisoquinoline [53112-20-4] in 55% yield (150). A similar reaction of AJ-sulfinyl- -toluenesulfonamide leads to l-(tos5larriino)isoquinoline [25770-51-8] which is readily hydrolyzed to 1-aminoisoquinoline (151). [Pg.396]

Amine Cross-Linking. Two commercially important, high performance elastomers which are not normally sulfur-cured are the fluoroelastomers (FKM) and the polyacrylates (ACM). Polyacrylates typically contain a small percent of a reactive monomer designed to react with amine curatives such as hexamethylene-diamine carbamate (Diak 1). Because the type and level of reactive monomer varies with ACM type, it is important to match the curative type to the particular ACM ia questioa. Sulfur and sulfur-beating materials can be used as cure retarders they also serve as age resistors (22). Fluoroelastomer cure systems typically utilize amines as the primary cross-linking agent and metal oxides as acid acceptors. [Pg.236]

Ethyl carbamate, C2HyN02, is developed naturally during the fermentation of alcohoHc beverages. It also appears in foods such as bread and yogurt. Since ethyl carbamate is not easily distilled, its formation most likely involves a distillable precursor. The mechanism of ethyl carbamate formation probably involves cyanate produced from the oxidation of cyanide or from urea-based compounds in the beer. Cyanate reacts with alcohol to form ethyl carbamate as follows ... [Pg.89]

H-Benzimidazole, 2,2-pentamethylene-reduction, 5, 423 Benzimidazole-2-carbaldehyde oximes, 5, 436 Benzimidazolecarbaldehydes oxidation, 5, 437 Benzimidazole-2-carbamates 5-substituted as anthelmintics, 1, 202 Benzimidazole-1-carboxylic acid, 2-amino-methyl ester reactions, 5, 453... [Pg.538]

A 2-methylthioethyl carbamate is cleaved by 0.01 N NaOH after alkylation to Me2S CH2CH2 or by 0.1 N NaOH after oxidation to the sulfone. ... [Pg.341]

Replacement of the carbamate function by an amide seems to be compatible with meprobamate-like activity in a compound formally derived from a 1,2-glycol. Oxidation of the commercially available aldehyde, 22, under controlled conditions affords the corresponding acid (23). This is then converted to its amide (24) via the acid chloride. Epoxidation by means of perphthalic acid affords oxanamide (25). ... [Pg.220]

From intermediate 28, the construction of aldehyde 8 only requires a few straightforward steps. Thus, alkylation of the newly introduced C-3 secondary hydroxyl with methyl iodide, followed by hydrogenolysis of the C-5 benzyl ether, furnishes primary alcohol ( )-29. With a free primary hydroxyl group, compound ( )-29 provides a convenient opportunity for optical resolution at this stage. Indeed, separation of the equimolar mixture of diastereo-meric urethanes (carbamates) resulting from the action of (S)-(-)-a-methylbenzylisocyanate on ( )-29, followed by lithium aluminum hydride reduction of the separated urethanes, provides both enantiomers of 29 in optically active form. Oxidation of the levorotatory alcohol (-)-29 with PCC furnishes enantiomerically pure aldehyde 8 (88 % yield). [Pg.196]


See other pages where Carbamate oxidation is mentioned: [Pg.393]    [Pg.409]    [Pg.1920]    [Pg.546]    [Pg.13]    [Pg.393]    [Pg.409]    [Pg.1920]    [Pg.546]    [Pg.13]    [Pg.46]    [Pg.233]    [Pg.293]    [Pg.293]    [Pg.311]    [Pg.393]    [Pg.404]    [Pg.454]    [Pg.420]    [Pg.240]    [Pg.278]    [Pg.90]    [Pg.6]    [Pg.273]    [Pg.225]    [Pg.483]    [Pg.624]    [Pg.650]    [Pg.137]   
See also in sourсe #XX -- [ Pg.4 ]




SEARCH



Carbamates anodic oxidation

Carbamates, methoxylation oxidation

Ethyl carbamate oxidation

Intramolecular carbamate oxidations

Oxidative Carbonylation of Alcohols to Carbonates, Oxalates, and Carbamates

Oxidative attack carbamates

Phenolic carbamates, oxidation

© 2024 chempedia.info