Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Camphor chiral auxiliary

The addition reactions of alkyllithium-lithium bromide complexes to a-trimethylsilyl vinyl sulfones that have as a chiral auxiliary a y-mono-thioacetal moiety derived from ( + )-camphor are highly diastereoselective. A transition state that involves chelation of the organolithium reagent to the oxygen of the thioacetal moiety has been invoked. The adducts are readily converted via hydrolysis, to chiral a-substituted aldehydes22. [Pg.1039]

Camphor-derived sulfonamide can also permit control of enantioselectivity by use of additional Lewis acid. These chiral auxiliaries can be used under conditions in which either cyclic or noncyclic TSs are involved. This frequently allows control of the syn or anti stereoselectivity.143 The boron enolates give syn products, but inclusion of SnCl4 or TiCl4 gave excellent selectivity for anti products and high enantioselectivity for a range of aldehydes.145... [Pg.123]

A new chiral auxiliary based on a camphor-derived 8-lactol has been developed for the stereoselective alkylation of glycine enolate in order to give enantiomerically pure a-amino acid derivatives. As a key step for the synthesis of this useful auxiliary has served the rc-selective hydroformylation of a homoallylic alcohol employing the rhodium(I)/XANTPHOS catalyst (Scheme 11) [56]. [Pg.155]

However, most asymmetric 1,3-dipolar cycloaddition reactions of nitrile oxides with alkenes are carried out without Lewis acids as catalysts using either chiral alkenes or chiral auxiliary compounds (with achiral alkenes). Diverse chiral alkenes are in use, such as camphor-derived chiral N-acryloylhydrazide (195), C2-symmetric l,3-diacryloyl-2,2-dimethyl-4,5-diphenylimidazolidine, chiral 3-acryloyl-2,2-dimethyl-4-phenyloxazolidine (196, 197), sugar-based ethenyl ethers (198), acrylic esters (199, 200), C-bonded vinyl-substituted sugar (201), chirally modified vinylboronic ester derived from D-( + )-mannitol (202), (l/ )-menthyl vinyl ether (203), chiral derivatives of vinylacetic acid (204), ( )-l-ethoxy-3-fluoroalkyl-3-hydroxy-4-(4-methylphenylsulfinyl)but-1 -enes (205), enantiopure Y-oxygenated-a,P-unsaturated phenyl sulfones (206), chiral (a-oxyallyl)silanes (207), and (S )-but-3-ene-1,2-diol derivatives (208). As a chiral auxiliary, diisopropyl (i ,i )-tartrate (209, 210) has been very popular. [Pg.25]

For acrylates, or type I reagents, applied in asymmetric Diels-Alder reactions, several chiral auxiliaries such as menthol derivatives, camphor derivatives,16,3 and oxazolidinones4 are available. Carbohydrate compounds have also been reported as chiral auxiliaries in a recent publication, although the stereoselectivity was not good.5 Here are examples in which asymmetric Diels-... [Pg.269]

Camphor sultam derivatives have proved to be effective chiral auxiliaries in many different types of asymmetric reactions. As shown in Scheme 5-44, chiral camphor sulfam can be applied in the synthesis of (—)-pulo upone precursor 151 using an intramolecular Diels-Alder reaction. A Wittig reaction of 148 with 147 connects the chiral auxiliary to the substrate, and subsequent intramolecular Diels-Alder reaction via transition state 150 affords product 151. Compound 151 already has the stereochemistry of (—)-pulo upone 153.72... [Pg.304]

Scheme 4.71 Camphor-derived auxiliary for the asymmetric synthesis of chiral allene ether 280. Scheme 4.71 Camphor-derived auxiliary for the asymmetric synthesis of chiral allene ether 280.
The Lewis acid-promoted [4+ 2]-cycloaddition reaction of the allenic ester 103 having a camphor-derived chiral auxiliary with cydopentadiene provided the adduct with excellent Jt-facial selection, leading to an enantioselective synthesis of (-)-/l-san-talene [92]. [Pg.760]

There are some problems associated with the use of sugar-derived auxiliaries 16 and 18. The nudeophilicity is much lower than for 1, possibly because of the presence of multiple ether functions that can complex lithium ion. It was necessary to include 4 equiv. of LiCl in the addition reactions of 16 and 19 to enamides, otherwise yields were low. A more serious problem associated with 16 is the erosion of the ee of products that was observed when the reactions were scaled up from 0.2 to 4 mmol. Fortunately, a chiral auxiliary that is prepared from camphor does not have these shortcomings [10]. [Pg.820]

Very recently the tandem hydroformylation/acetalization has been used for the synthesis of new synthetically valuable chiral auxiliary derived from camphor. Stereoselective allylation of camphor and subsequent terminal hydroformylation of the resulting homoallylic alcohol affords the 5-lactol auxiliary (camTHP OH) in multigram scale (Scheme 8) [41]. [Pg.79]

Another aspect of the chemical properties of mixmres of enantiomers has been reported by Wynberg and Feringa in 1976. These authors have smdied some dia-stereoselective reactions on chiral molecules (such as the LiAlH4 reduction of camphor) in the absence of chiral auxiliaries. They found that the product distribution was significantly different if the substrate was enantiopure or racemic. Similarly, it is known that reduction of enantiopure or racemic camphor by K/liquid NH3 gives rise to different isobomeol/bomeol ratios, a detailed mechanistic analysis has been done by Rautenstrauch. °... [Pg.209]

The formation of spirocyclopropanes from the reaction of diazodiphenylmethane and ( )-8-phenylmenthyl esters of acrylic acid and methyl fumarate occurred with a modest level of diastereofacial selectivity (136). In contrast, diastereoselectivities of 90 10 were achieved in the cycloadditions of diazo(trimethylsilyl)methane with acrylamides 65 derived from camphor sultam as the chiral auxiliary (137) (Scheme 8.16). Interestingly, the initial cycloadducts 66 afforded the nonconjugated A -pyrazolines 67 on protodesilylation the latter were converted into optically active azaproline derivatives 68. In a related manner, acrylamide 69 was converted into A -pyrazolines 70a,b (138). The major diastereoisomer 70a was used to synthesize indolizidine 71. The key step in this synthesis involves the hydrogenolytic cleavage of the pyrazoline ring. [Pg.554]

Asymmetric alkylation of benzylamine via the imine 6A, with ( + )-D-camphor (5 A) as chiral auxiliary is possible. Deprotonation with butyllithium and subsequent alkylation with haloalkanes, (R X) afforded the alkylated imines 7 A with reasonable yield but variable diastereo-selectivity. The diastereoselectivity depends strongly on the haloalkane with methoxy-substi-tuted halomethylbenzenes moderate to good diastereoselectivity (d.r. 80 20-90 10) is obtained, however, with haloalkanes or 3-halopropenes only low optical purities (< 50%) were observed. [Pg.673]

W. Oppolzer, Camphor Derivatives as Chiral Auxiliaries, in Asymmetric Synthesis, Tetrahedron 43, 1969 (1987). [Pg.1333]

It was clear that 1 would be derived from a Diels-Alder adduct. There has been a great deal of work in recent years around the development of enantioselective catalysts for the Diels-Alder reaction, but the catalysts that have been developed to date only work with activated dienophile-diene combinations. For less reactive dienes, it is still necessary to use chiral auxiliary control. One of the more effective of those was the known camphor-derived tertiary alcohol, so that was used in this project. Diels-Alder cycloaddition of the diene 4 with the enantiomerically-pure enone 5 led to the adduct 6 with high diastereocontrol. Oxidative cleavage led to the acid 7, which was carried on to the bis-enone I. [Pg.95]

The amino alcohol-catalyzed enantioselective addition of dialkylzincs to aldehydes, detailed in Chapter 5 (27), is accomplished with polymer catalysts containing DAIB, a camphor-derived auxiliary, and other chiral amino alcohols (28). Reactions that involve matrix isolation of the catalyst not only result in operational simplicity but also greatly facilitate understanding of the reaction mechanism. In solution, the catalytic chiral alkylzinc alkoxide derived from a dialkylzinc and DAIB exists primarily as dimer (27) however, when immobilized, its monomeric structure can be maintained. [Pg.381]

A 1,3-oxathiane chiral auxiliary derived from camphor has also been reported [58]. [Pg.123]

Camphor-10-sulfonic acid, 62, 64 Chiral Auxiliaries, Chiral Catalysts, and Chiral Ligands... [Pg.402]

Isosorbide (3) and isomannide (4) act as chiral auxiliaries for the sodium borohydride reduction of some prochiral ketones optical yields of up to 20% were achieved. It seems that the isohexides form chiral complexes with sodium borohydride, whereby the chiral information is transferred to the substrate.219 Optical active alcohols were obtained by reduction of appropriate ketones with sodium or lithium borohydride in the presence of isosor-bide.219 Asymmetric reduction of propiophenone using sodium borohydride, modified with (+)-camphoric acid and isosorbide, resulted in C -phenylethylcarbinol in 35% enantiomeric excess.2,9b... [Pg.160]

In an isolated case, a tertiary alcohol was used as chiral auxiliary the crotonate (19), prepared from the (+)-camphor-derived alcohol (18), undergoes highly diastereoselective 1,4-addition of a cuprate reagent (Scheme 6).24... [Pg.202]

A potential method for the preparation of novel amino acids via the highly selective addition of radicals to the glyoxylic oxime derivative of Oppolzer s camphor sultam (88) has been reported.181 Both Lewis acid and non-Lewis acid-mediated reaction conditions for the addition of alkyl radicals generated from alkyl iodides and Et3B/Bu3SnH were examined. A new chiral auxiliary based upon (R,R)-2,5-diphenylpyiTolidine has been used in the addition of phenylthiyl radicals to unsaturated methacrylamides. The selectivity was found to be better than that reported for the structurally related 2,5-dimethylpyrrolidine derivative.182... [Pg.125]

Acyliron complexes with central chirality at the metal are obtained by substitution of a carbon monoxide with a phosphine ligand. Kinetic resolution of the racemic acyliron complex can be achieved by aldol reaction with (1 R)-( I (-camphor (Scheme 1.14) [41], Along with the enantiopure (R, c)-acyliron complex, the (Spe)-acyliron-camphor adduct is formed, which on treatment with base (NaH or NaOMe) is converted to the initial (SFe)-acyliron complex. Enantiopure acyliron complexes represent excellent chiral auxiliaries, which by reaction of the acyliron enolates with electrophiles provide high asymmetric inductions due to the proximity of the chiral metal center. Finally, demetallation releases the enantiopure organic products. [Pg.10]

Sato and coworkers have reported an asymmetric synthesis of Baylis-Hillman-type allylic alcohols 48, 49 via a chiral acetylenic ester titanium alkoxide complex (Scheme 9) [41]. These reactions rely on the use of the novel acetylenic ester titanium alkoxide complex 44 with a camphor-derived chiral auxiliary. Optically active, stereodefined hydroxy acrylates 46, 47 were obtained in high yields and with excellent regio- and diastereoselectivities. The chiral auxiliary was subsequently cleaved off by alcoholysis. [Pg.173]


See other pages where Camphor chiral auxiliary is mentioned: [Pg.73]    [Pg.73]    [Pg.435]    [Pg.73]    [Pg.73]    [Pg.435]    [Pg.78]    [Pg.268]    [Pg.269]    [Pg.71]    [Pg.341]    [Pg.175]    [Pg.821]    [Pg.383]    [Pg.67]    [Pg.164]    [Pg.1040]    [Pg.792]    [Pg.187]    [Pg.639]    [Pg.201]    [Pg.204]    [Pg.439]    [Pg.439]    [Pg.625]    [Pg.631]    [Pg.74]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



Camphor auxiliary

Camphorates

Camphore

Chirality auxiliaries

© 2024 chempedia.info