Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calculation, thermodynamic optimization of phase diagrams

2 Calculation, thermodynamic optimization of phase diagrams. The knowledge of phase equilibria, phase stability, phase transformations is an important reference point in the description and understanding of the fundamental properties of the alloys and of their possible technological applications. This interest has promoted a multi-disciplinary and multi-national effort dedicated not only to experimental methods, but also to techniques of optimization, calculation and prediction of [Pg.68]

Several approaches to this problem have been considered starting from the first calculations carried out by van Laar (1908) and the contributions given by Meijering [Pg.69]

The role of a thermodynamic approach is well known a thermodynamic check, optimization and prediction of the phase diagram may be carried out by using methods such as those envisaged by Kubaschewski and Evans (1958), described by Kaufman and Nesor (1973), Ansara et al. (1978), Hillert (1981) and very successfully implemented by Lukas et al. (1977, 1982), Sundman et al. (1985). The knowledge (or the prediction) of the intermediate phases which are formed in a certain alloy system may be considered as a preliminary step in the more general and complex problem of assessment and prediction of all the features of phase equilibria and phase diagrams. See also Aldinger and Seifert (1993). [Pg.70]

It should be remembered that the CALPHAD approach is based on the hypothesis that, for all the phases and structures existing across the complete alloy system, entire Gibbs energy vs. composition curves may be constructed even by extrapolation into regions where they are unstable or metastable. A particular case concerns the pure component elements for which the relative Gibbs energy for the different crystal structures (the so-called lattice stabilities) must also be established and defined as a function of temperature (and pressure). [Pg.70]

Evidence relevant to the phase stability problem has been given by Massalski (1989). The so-called compound energy formalism was constructed by Hillert and Staffansson (1970) in order to describe models of the thermodynamic properties of phases with two or more sublattices showing a variation in composition, which therefore belong to the class of solution phases. A review of this formalism and a summary of its applications have been recently published by Hillert (2001) and Frisk and Selleby (2001). [Pg.70]




SEARCH



Calculation of phase diagrams

Diagram, thermodynamic

Phase Calculation

Phase diagram calculation, thermodynamic

Phase diagrams calculation

Thermodynamic calculation

Thermodynamic phase

Thermodynamic phase diagram

Thermodynamics calculations

© 2024 chempedia.info