Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

C rhodium-catalyzed

Figure 16.14 The inside of a catalytic converter is coated with particles of rhodium and platinum. At 500°C, rhodium catalyzes the conversion of nitrogen oxide (NO) to nitrogen (N2) and oxygen (O2). Platinum catalyzes the conversion of carbon monoxide (CO) to carbon dioxide (CO2) and converts any unburned gasoline, represented by CxHy, to carbon dioxide and water vapor (H2O). [Pg.573]

Scheme 1.9 (a-c) Rhodium-catalyzed carbonylation of alkynes and boronic acids. [Pg.13]

Homogeneous rhodium-catalyzed hydroformylation (135,136) of propene to -butyraldehyde (qv) was commercialized in 1976. -Butyraldehyde is a key intermediate in the synthesis of 2-ethyIhexanol, an important plasticizer alcohol. Hydroformylation is carried out at <2 MPa (<290 psi) at 100°C. A large excess of triphenyl phosphine contributes to catalyst life and high selectivity for -butyraldehyde (>10 1) yielding few side products (137). Normally, product separation from the catalyst [Rh(P(C2H2)3)3(CO)H] [17185-29-4] is achieved by distillation. [Pg.180]

Mitsubishi Chemical uses a proprietary medium pressure rhodium-catalyzed process (29) in some plants which operate at 90—120°C and 5—10 MPa (725—1450 psi), and gives isomer ratios of about 4 1. [Pg.380]

In this context, the use of ionic liquids with halogen-free anions may become more and more popular. In 1998, Andersen et al. published a paper describing the use of some phosphonium tosylates (all with melting points >70 °C) in the rhodium-catalyzed hydroformylation of 1-hexene [13]. More recently, in our laboratories, we found that ionic liquids with halogen-free anions and with much lower melting points could be synthesized and used as solvents in transition metal catalysis. [BMIM][n-CgHi7S04] (mp = 35 °C), for example, could be used as catalyst solvent in the rhodium-catalyzed hydroformylation of 1-octene [14]. [Pg.216]

J. Herwig, R. Eischer in Rhodium-catalyzed Hydroformylation in Catalysis by Metal Complexes (P. W. N. M. van Leewen, C. Claver eds.), Kluwer Academic Publisher, The Netherlands,... [Pg.279]

The reaction of crotyl bromide with ethyl diazoacetate once again reveals distinct differences between rhodium and copper catalysis. Whereas with copper catalysts, the products 125 and 126, expected from a [2,3] and a [1,2] rearrangement of an intermediary halonium ylide, are obtained by analogy with the crotyl chloride reaction 152a), the latter product is absent in the rhodium-catalyzed reaction at or below room temperature. Only when the temperature is raised to ca. 40 °C, 126 is found as well, together with a substantial amount of bromoacetate 128. It was assured that only a minor part of 126 arose from [2,3] rearrangement of an ylide derived from 3-bromo-l-butene which is in equilibrium with the isomeric crotyl bromide at 40 °C. [Pg.137]

The EfZ ratio of stilbenes obtained in the Rh2(OAc)4-catalyzed reaction was independent of catalyst concentration in the range given in Table 22 357). This fact differs from the copper-catalyzed decomposition of ethyl diazoacetate, where the ratio diethyl fumarate diethyl maleate was found to depend on the concentration of the catalyst, requiring two competing mechanistic pathways to be taken into account 365), The preference for the Z-stilbene upon C ClO -or rhodium-catalyzed decomposition of aryldiazomethanes may be explained by the mechanism given in Scheme 39. Nucleophilic attack of the diazoalkane at the presumed metal carbene leads to two epimeric diazonium intermediates 385, the sterically less encumbered of which yields the Z-stilbene after C/C rotation 357,358). Thus, steric effects, favoring 385a over 385 b, ultimately cause the preferred formation of the thermodynamically less stable cis-stilbene. [Pg.225]

Mannig and Noth reported the first example of rhodium-catalyzed hydroboration to C=C bonds in 1985.4 Catecholborane reacts at room temperature with 5-hexene-2-one at the carbonyl double bond when the reaction was run in the presence of 5mol.% Wilkinson s catalyst [Rh(PPh3)3Cl], addition of the B—H bond across the C=C double bond was observed affording the anti-Markovnikoff ketone as the major product (Scheme 2). Other rhodium complexes showed good catalytic properties ([Rh(COD)Cl2]2, [ Rh(PPh3)2(C O )C 1], where... [Pg.266]

Another important reaction principle in modem organic synthesis is carbon-hydrogen bond activation [159]. Bergman, Ellman, and coworkers have introduced a protocol that allows otherwise extremely sluggish inter- and intramolecular rhodium-catalyzed C-H bond activation to occur efficiently under microwave heating conditions. In their investigations, these authors found that heating of alkene-tethered benzimidazoles in a mixture of 1,2-dichlorobenzene and acetone in the presence of di-//-... [Pg.160]

P.W.N.M. van Leeuwen, C. Claver (Ed.) Rhodium Catalyzed Hydroformylation, Kluwer Acedemic Publishers, Dordrecht, 2000. [Pg.70]

Another route to the diol monomer is provided by hydroformylation of allyl alcohol or allyl acetate. Allyl acetate can be produced easily by the palladium-catalyzed oxidation of propylene in the presence of acetic acid in a process similar to commercial vinyl acetate production. Both cobalt-and rhodium-catalyzed hydroformylations have received much attention in recent patent literature (83-86). Hydroformylation with cobalt carbonyl at 140°C and 180-200 atm H2/CO (83) gave a mixture of three aldehydes in 85-99% total yield. [Pg.40]

Fell and Bari (89) also studied the rhodium-catalyzed reaction. A rho-dium-N-methylpyrrolidine-water catalyst system was very effective for producing the propane-1,2-diol acetate directly. The best yields (>90%) of product of about 9 1 alcohol aldehyde ratio were obtained in the region of 95°-l 10°C. This range was very critical, as were other reaction parameters. Rhodium alone gave the best yield of aldehyde (83%) at 60°C. Triphenylphosphine as cocatalyst induced the decomposition of the aldehyde product. [Pg.43]

Rhodium-catalyzed oxidative C arylations of unprotected pyrroles have been reported, and the products were the result of both arylation and amination processes (Equation (28)).37... [Pg.112]

Brookhart s group has reported a related rhodium-catalyzed olefin insertion. To gain insight into the mechanism of this process, labeling studies were carried out under conditions where no coupling product was observed ( H NMR study at 80 °C). Deuterium loss occurred in both meta- and para-sites of the aromatic group, and deuterium incorporation was observed in the olefin (Equation (95)).89... [Pg.131]

A rhodium-catalyzed intramolecular C-H functionalization has been employed for the synthesis of bicyclic imidazoles. The alkene acts as an anchor to the metal, directing the C-H functionalization process, which involves the formation of an Rh(l) carbene intermediate (Equation (118)).107... [Pg.138]

A recyclable system for the directed rhodium-catalyzed hydroacylation of olefins was reported using a homogeneous phenol and 4,4 -dipyridyl solvent system at 150 °C. High yields were obtained even after eight cycles and the ketone product was obtained after decantation (Equation (132)).115... [Pg.142]

A titanium-mediated amination followed by a directed rhodium-catalyzed C-H functionalization of an olefinic C-H leads to heterocycles (Equation (184)).149... [Pg.155]

The signature application for the G-H insertion in synthesis is probably the total synthesis of (—)-tetrodotoxin 126 by Du Bois and Hinman.233 Two stereospecific G-H activation steps, rhodium-catalyzed carbene G-H insertion and carbamate-based nitrene C-H insertion, have been used to install the two tetrasubstituted centers C6 and C8a (Scheme 12). Diazoketone 122 was treated with 1.5mol% Rh2(HNCOCPh3)4, and cyclic ketone 123 was selectively formed in high yield without purification. The reaction of carbamate 124 with 10mol% Rh2(HNCOCF3)4, PhI(OAc)4, and MgO in C6H6 solvent furnished the insertion product 125 in 77% yield. [Pg.204]


See other pages where C rhodium-catalyzed is mentioned: [Pg.468]    [Pg.140]    [Pg.503]    [Pg.304]    [Pg.14]    [Pg.468]    [Pg.140]    [Pg.503]    [Pg.304]    [Pg.14]    [Pg.118]    [Pg.79]    [Pg.279]    [Pg.251]    [Pg.1132]    [Pg.1403]    [Pg.328]    [Pg.360]    [Pg.92]    [Pg.178]    [Pg.461]    [Pg.464]    [Pg.468]    [Pg.33]    [Pg.199]    [Pg.209]    [Pg.197]    [Pg.200]    [Pg.164]    [Pg.199]    [Pg.119]    [Pg.221]    [Pg.81]    [Pg.257]    [Pg.90]    [Pg.98]    [Pg.201]   
See also in sourсe #XX -- [ Pg.223 ]




SEARCH



Rhodium-Catalyzed C-H Aminations

Rhodium-Catalyzed C-H Bond Arylation of Arenes

Rhodium-catalyzed

Rhodium-catalyzed C—H amination

© 2024 chempedia.info