Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butadiene, nickel complex-catalyzed reactions

The catalytic cyclo-oligomerization of 1,3-butadiene mediated by transition-metal complexes is one of the key reactions in homogeneous catalysis.1 Several transition metal complexes and Ziegler-Natta catalyst systems have been established that actively catalyze the stereoselective cyclooligomerization of 1,3-dienes.2 Nickel complexes, in particular, have been demonstrated to be the most versatile catalysts.3... [Pg.168]

Among transition metal complexes used as catalysts for reactions of the above-mentioned types b and c, the most versatile are nickel complexes. The characteristic reactions of butadiene catalyzed by nickel complexes are cyclizations. Formations of 1,5-cyclooctadiene (COD) (1) and 1,5,9-cyclododecatriene (CDT) (2) are typical reactions (2-9). In addition, other cyclic compounds (3-6) shown below are formed by nickel catalysts. Considerable selectivity to form one of these cyclic oligomers as a main product by modification of the catalytic species with different phosphine or phosphite as ligands has been observed (3, 4). [Pg.142]

After that, studies on the palladium-catalyzed reactions of conjugated dienes attracted little attention. They have only been reexamined since the late 1960 s. The scope of the reaction of butadiene catalyzed by palladium complexes has gradually been established. The catalysis by palladium is different from those of other transition metals. Although palladium is located below nickel in the periodic table, the catalytic... [Pg.144]

These telomerization reactions of butadiene with nucleophiles are also catalyzed by nickel complexes. For example, amines (18-23), active methylene compounds (23, 24), alcohols (25, 26), and phenol (27) react with butadiene. However, the selectivity and catalytic activity of nickel catalysts are lower than those of palladium catalysts. In addition, a mixture of monomeric and dimeric telomers is usually formed with nickel catalysts ... [Pg.146]

Addition of active methylene compounds to butadiene has been catalyzed by complexes of the nickel triad. A catalyst mixture of Ni(acac)2, PPr(OR )2, and borohydride was effective for the addition of R1R2CH2 (Ri = Ph, R2 = COCH3 Ri = Ph, R2 = CN Ri = Ra = COgEt Ri = COCH3, Rg = COgEt) to butadiene 26). Both Pd(0) and Pd(II) complexes are effective as catalysts for the addition of active methylene compounds such as 2,4-pentanedione and ethyl acetoacetate to butadiene 177, 269). Several products were obtained from these reactions since both the 1 1 and 1 2 addition occurred. [Pg.326]

The mechanism of stereoregulation, however, remained unclear for many years. Only more recently has an experimentally well-founded comprehensive reaction model been derived for the allylnickel complex-catalyzed 1,4-polymerization of butadiene, which convincingly explains the catalytic reaction mechanisms and the structure-reactivity relationships also involving the industrial nickel catalyst [26-28]. [Pg.288]

The most outstanding example for the applieation of homogeneously catalyzed hydrocyanation is the DuPont adiponitrile process. About 75 % of the world s demand for adiponitrile is covered by hydrocyanation of butadiene in the presence of nickel(O) phosphite species. This process is discussed for the addition of HCN to dienes as an example, because in this case a well-founded set of data is available. Though it was Taylor and Swift who referred to hydrocyanation of butadiene for the first time [45], it was to Drinkard s credit that this principle was fully exploited for the development of the DuPont adiponitrile process [18]. The overall process is described as the addition of two equivalents of HCN to butadiene in the presence of a tetrakisphosphite-nickel(O) catalyst and a Lewis acid promoter. A phosphine-containing ligand system for the catalyst is not suitable, since addition of HCN to the tetrakisphosphine-nickel complex results in the formation of hydrogen and the non-aetive dicyano complex [67], In general the reaction can... [Pg.481]

Insertion of dienes into M-H bond or M-alkyl bond affords r -allylic complexes or its )7 -alken-J7 -yl resonance form. The allylic complex may further undergo insertion of other unsaturated compounds such as alkene or diene into the unsubstituted or substituted terminal of the allyhc ligand. If successive butadiene insertion takes place, polymers with internal unsaturated bonds are produced as will be described later. A nickel-catalyzed reaction of butadiene with 2 mol of HCN affords adiponitrile, an important feedstock in polymer synthesis (Eq. 1.15). [Pg.31]

The addition of HCN to olefins catalyzed by complexes of transition metals has been studied since about 1950. The first hydrocyanation by a homogeneous catalyst was reported by Arthur with cobalt carbonyl as catalyst. These reactions gave the branched nitrile as the predominant product. Nickel complexes of phosphites are more active catalysts for hydrocyanation, and these catalysts give the anti-Markovnikov product with terminal alkenes. The first nickel-catalyzed hydrocyanations were disclosed by Drinkard and by Brown and Rick. The development of this nickel-catalyzed chemistry into the commercially important addition to butadiene (Equation 16.3) was conducted at DuPont. Taylor and Swift referred to hydrocyanation of butadiene, and Drinkard exploited this chemistry for the synthesis of adiponitrile. The mechanism of ftiis process was pursued in depth by Tolman. As a result of this work, butadiene hydrocyanation was commercialized in 1971. The development of hydrocyanation is one of tfie early success stories in homogeneous catalysis. Significant improvements in catalysts have been made since that time, and many reviews have now been written on this subject. ... [Pg.668]

In homogeneous catalysis telomerization is defined as the oligomerization of dienes with incorporation of a nucleophile. For example, two molecules of butadiene react with one nucleophile HY to form telomers. This reaction is catalyzed by various organometallic compounds of the transition metals, especially by palladium and nickel complexes. [Pg.141]

DuPont currentiy practices a butadiene-to-adiponittile route based on direct addition of HCN to butadiene (6—9). It was first commercialized in 1971. AH reactions are catalyzed by soluble, air and moisture sensitive, ttiarylphosphite-nickel(0) complexes. [Pg.220]

Unlike nickel Catalysts, palladium complexes do not catalyze the homo-cyclization reaction to give CDT or COD. The difference seems to be due to a different degree of hydride shift and atomic volume. With palladium catalysts, the hydride shift is easier, and hence linear oligomers are formed. The characteristic reaction catalyzed by palladium is the cocyclization of two moles of butadiene with one-hetero atom double bonds such as C=N and C=0 bonds to give six-membered rings with two vinyl groups (19) ... [Pg.176]

The essential steps in the nickel-catalyzed 1 1 codimerization reaction, which involve hydride addition to butadiene and ethylene coordination to the metal atom, were first proposed by Kealy, Miller, and Barney (35) and were later demonstrated by Tolman (40) using a model complex. Tolman prepared the complex H—Ni+L PFe [L = (EtO)3P] and showed that, after prior dissociation to form H—NiL3, it can react with butadiene to form a 7r-crotyl complex 19. [Pg.293]

The nickel-catalyzed [4 + 4]-cycloaddition of butadiene to form cyclooctadiene was first reported by Reed in 1954.90 Pioneering mechanistic and synthetic studies largely derived from the Wilke group advanced this process to an industrially important route to cyclodimers, trimers, and other molecules of interest.91-94,943 95,96 While successful with simple dienes, this process is not useful thus far with substitutionally complex dienes as needed in complex molecule synthesis. In 1986, Wender and Ihle reported the first intramolecular nickel-catalyzed [4 + 4]-reaction of... [Pg.618]

Solutions of the nickel(O) and palladium(O) complexes of 1,3,5-triaza-7-phosphaadamantane, PTA (82) and tris(hydroxymethyl)phosphine (98) in water catalyze the oligomerization and telomerization of 1,3-butadiene at 80 °C. Although high yields and good selectivities to octadienyl products (87 %) were obtained, the complexes (or the intermediate species formed in the reaction) dissolve sufficiently in the organic phase ofthe monomer and the products to cause substantial metal leaching [17],... [Pg.197]

When some other reaction parameter, Z, such as the log of a rate constant, is plotted on to this steric and electronic map on an axis normal to the plane of the paper the comparative contributions of 6 and v should become apparent. A purely steric effect will slope north or south (the reader is encouraged to view Figures 26-28 of ref. 187 to appreciate this fully). Weimann and co-workers211 used Tolman s methodology to show the % steric effect in the oligomerization of butadiene catalyzed by nickel phosphine complexes. [Pg.1028]


See other pages where Butadiene, nickel complex-catalyzed reactions is mentioned: [Pg.168]    [Pg.6]    [Pg.334]    [Pg.335]    [Pg.1497]    [Pg.145]    [Pg.224]    [Pg.511]    [Pg.119]    [Pg.201]    [Pg.99]    [Pg.154]    [Pg.318]    [Pg.324]    [Pg.483]    [Pg.220]    [Pg.476]    [Pg.1493]    [Pg.189]    [Pg.413]    [Pg.676]    [Pg.1758]    [Pg.472]    [Pg.263]    [Pg.254]    [Pg.213]    [Pg.175]    [Pg.210]    [Pg.555]    [Pg.34]   


SEARCH



Butadiene complexes

Butadiene reactions

Butadiene, catalyzed reactions

Butadiene, nickel complex-catalyzed reactions dimerization

Complex nickel-butadiene

Nickel-catalyzed

Nickel-catalyzed reaction

Nickel-complex-catalyzed reactions

Reaction nickel

© 2024 chempedia.info