Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boundary layers laminar integral momentum equation

This is termed the boundary layer momentum integral equation. As previously mentioned, it is equally applicable to laminar and turbulent flow. In laminar flow, u is the actual steady velocity while in turbulent flow it is the time averaged value. [Pg.75]

The way in which the momentum integral equation is applied will be discussed in detail in the next chapter. Basically, it involves assuming the form of the velocity profile, i.e., of the variation of u with y in the boundary layer. For example, in laminar flow a polynomial variation is often assumed. The unknown coefficients in this assumed form are obtained by applying the known condition on velocity at the inner and outer edges of the boundary layer. For example, the velocity must be zero at the wall while at the outer edge of the boundary layer it must become equal to the freestream velocity, u. Thus, two conditions that the assumed velocity profile must satisfy are ... [Pg.75]

The boundary layer integral equations have been derived above without recourse to the partial differential equations for boundary layer flow. They can, however, be determined directly from these equations. Consider, for example, the laminar momentum equation (2.140). Integrating this equation across the boundary layer to some distance from the wall, i being greater than the boundary layer thickness, gives because du/dy is zero outside the boundary layer and because dp/dx is independent of y ... [Pg.78]

In Chapter 5, we learned the foundations of convection. Integrating the governing equations for laminar boundary layers, we obtained expressions for the heat transfer associated with forced convection over a horizontal plate and natural convection about a vertical plate. We also found analytically, as well as by the analogy between heat and momentum, that the thermal and momentum characteristics of laminar flow over a flat plate are related by... [Pg.288]

In order to derive the basic equation for a laminar or turbulent boundary layer, a small control volume in the boundary layer on a flat plate is used as shown in Fig. 3.10-5. The depth in the z direction is b. Flow is only through the surfacesand dj and also from the top curved surface at 8. An overall integral momentum balance using Eq. (2.8-8) and overall integral mass balance using Eq. (2.6-6) are applied to the control volume inside the boundary layer at steady state and the final integral expression by von Karman is (B2, S3)... [Pg.199]

Integral momentum balance for laminar boundary layer. Before we use Eq. (3.10-48) for the turbulent boundary layer,.this equation will be applied to the laminar boundary layer over a flat plate so that the results can be compared with the exact Blasius solution in Eqs. (3.10-6)-(3.10-12). [Pg.200]


See other pages where Boundary layers laminar integral momentum equation is mentioned: [Pg.676]    [Pg.676]    [Pg.150]   


SEARCH



Boundary equation

Boundary integral equation

Boundary integrals

Boundary laminar

Equations momentum equation

Integral equations

Momentum boundary layer

Momentum equation

Momentum equation, laminar boundary

Momentum equation, laminar boundary layer

© 2024 chempedia.info