Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bosonic functions

To complete the modification, we go beyond eqn (13.7), the high-temperature approximant of the bosonic function, by one more term in the Taylor s expansion ... [Pg.348]

Since the total wave function must have the correct symmetry under the permutation of identical nuclei, we can determine the symmetiy of the rovi-bronic wave function from consideration of the corresponding symmetry of the nuclear spin function. We begin by looking at the case of a fermionic system for which the total wave function must be antisynmiebic under permutation of any two identical particles. If the nuclear spin function is symmetric then the rovibronic wave function must be antisymmetric conversely, if the nuclear spin function is antisymmebic, the rovibronic wave function must be symmetric under permutation of any two fermions. Similar considerations apply to bosonic systems The rovibronic wave function must be symmetric when the nuclear spin function is symmetric, and the rovibronic wave function must be antisymmetiic when the nuclear spin function is antisymmetric. This warrants... [Pg.574]

As was shown in the preceding discussion (see also Sections Vin and IX), the rovibronic wave functions for a homonuclear diatomic molecule under the permutation of identical nuclei are symmetric for even J rotational quantum numbers in and E electronic states antisymmeUic for odd J values in and E elecbonic states symmetric for odd J values in E and E electronic states and antisymmeteic for even J values in Ej and E+ electeonic states. Note that the vibrational ground state is symmetric under pemrutation of the two nuclei. The most restrictive result arises therefore when the nuclear spin quantum number of the individual nuclei is 0. In this case, the nuclear spin function is always symmetric with respect to interchange of the identical nuclei, and hence only totally symmeUic rovibronic states are allowed since the total wave function must be symmetric for bosonic systems. For example, the nucleus has zero nuclear spin, and hence the rotational levels with odd values of J do not exist for the ground electronic state f EJ") of Cr. [Pg.575]

The first allowable equation holds for bosons, and the second holds for femiions. If we form a linear combination of wave functions for bosons. [Pg.267]

The most general statement of the Pauli principle for electrons and other fermions is that the total wave function must be antisymmetric to electron (or fermion) exchange. For bosons it must be symmetric to exchange. [Pg.220]

Systems containing symmetric wave function components ate called Bose-Einstein systems (129) those having antisymmetric wave functions are called Fermi-Ditac systems (130,131). Systems in which all components are at a single quantum state are called MaxweU-Boltzmaim systems (122). Further, a boson is a particle obeying Bose-Einstein statistics, a fermion is one obeying Eermi-Ditac statistics (132). [Pg.248]

An additional complication in the PIMC simulations arises when Bose or Fermi statistics is included in the formalism. The trace in the partition function allows for paths which may end at a particle index which is different from the starting index. In this way larger, closed paths may build up which eventually spread over the entire system. All such possible paths corresponding to the exchange of indistinguishable particles have to be taken into account in the partition function. For bosons these contributions are summed up for fermions the number of permutations of particle indices involved decides whether the contribution is added (even) or subtracted (odd) in the partition function. [Pg.94]

The behavior of a multi-particle system with a symmetric wave function differs markedly from the behavior of a system with an antisymmetric wave function. Particles with integral spin and therefore symmetric wave functions satisfy Bose-Einstein statistics and are called bosons, while particles with antisymmetric wave functions satisfy Fermi-Dirac statistics and are called fermions. Systems of " He atoms (helium-4) and of He atoms (helium-3) provide an excellent illustration. The " He atom is a boson with spin 0 because the spins of the two protons and the two neutrons in the nucleus and of the two electrons are paired. The He atom is a fermion with spin because the single neutron in the nucleus is unpaired. Because these two atoms obey different statistics, the thermodynamic and other macroscopic properties of liquid helium-4 and liquid helium-3 are dramatically different. [Pg.218]

The A-particle eigenfunctions I v(l, 2,. .., A) in equation (8.47) are not properly symmetrized. For bosons, the wave function (1, 2,. .., N) must be symmetric with respect to particle interchange and for fermions it must be antisymmetric. Properly symmetrized wave functions may be readily con-... [Pg.220]

Thus, the two wave functions can at most differ by a unimodular complex number e1. It can be shown that the only possibilities occurring in nature are that either the two functions are identical (symmetric wave function, applies to particles called bosons which have inte-... [Pg.22]

Now — L is the Landau-Ginzburg free energy, where m2 = a(T — Tc) near the critical temperature, is a macroscopic many-particle wave function, introduced by Bardeen-Cooper-Schrieffer, according to which an attractive force between electrons is mediated by bosonic electron pairs. At low temperature these fall into the same quantum state (Bose-Einstein condensation), and because of this, a many-particle wave function (f> may be used to describe the macroscopic system. At T > Tc, m2 > 0 and the minimum free energy is at = 0. However, when T [Pg.173]

The fact that every state may be occupied by several particles shows that the second quantization particles are bosons. However, in terms of different commutation relations an equivalent scheme may be obtained for fermions. To achieve this objective the wave functions are written in decomposed form as before ... [Pg.460]

The formalism can be extended for a quantum Jield with the TFD Lagrangian density given by t = — , where is a replica of for the tilde fields so leading to similar equations of motion. For the purpose of our applications, we shall restrict our analysis to free massless fields. Thus, considering the free-massless boson (Klein-Gordon) field, the two-point Green function in the doubled space is given by... [Pg.219]

The validity of the t Hooft anomaly conditions at high matter density have been investigated in [32, 33], A delicate part of the proof presented in [33] is linked necessarily to the infrared behavior of the anomalous three point function. In particular one has to show the emergence of a singularity (i.e. a pole structure). This pole is then interpreted as due to a Goldstone boson when chiral symmetry is spontaneously broken. [Pg.161]

In order to perform the functional integrations over the quark fields q and q we use the formalism of bosonisation which is based on the Hubbard-Stratono-vich transformation of the four-fermion interaction. The resulting transformed partition function in terms of bosonic variables will be considered in the mean-field approximation... [Pg.379]

In Chapter 1 we have discussed the familiar realization of quantum mechanics in terms of differential operators acting on the space of functions (the Schrodinger wave function formulation, also called wave mechanics ). A different realization can be obtained by means of creation and annihilation operators, leading to an algebraic formulation of quantum mechanics, sometimes called matrix mechanics. For problems with no spin, the formulation is done in terms of boson creation, b (, and annihilation, ba, operators, satisfying the commutation relations... [Pg.25]

The method of Section 7.6 can be used to find the potential functions corresponding to the boson Hamiltonians of Chapter 2. According to Eq. (2.30), one has in this case two possible chains... [Pg.162]

This is a function of the complex variables E,j, ,2- Once more, by making use of intensive boson operators, one can easily obtain Hd(pi,q, p2, q2). The potential functions can then be defined as... [Pg.165]


See other pages where Bosonic functions is mentioned: [Pg.275]    [Pg.268]    [Pg.408]    [Pg.408]    [Pg.275]    [Pg.268]    [Pg.408]    [Pg.408]    [Pg.195]    [Pg.569]    [Pg.575]    [Pg.578]    [Pg.610]    [Pg.267]    [Pg.131]    [Pg.90]    [Pg.133]    [Pg.57]    [Pg.227]    [Pg.230]    [Pg.349]    [Pg.66]    [Pg.272]    [Pg.677]    [Pg.683]    [Pg.686]    [Pg.718]    [Pg.175]    [Pg.192]    [Pg.201]    [Pg.288]    [Pg.161]    [Pg.167]    [Pg.175]   
See also in sourсe #XX -- [ Pg.321 , Pg.328 ]




SEARCH



Bosonic spectral functions

Bosons

Spectral function spin-boson model

© 2024 chempedia.info