Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boronic acids aryl halide cross-coupling

Carbonylative Suzuki Cross-Coupling Reactions Carbonyladve Snzuki cross-coupling is a useful SCR (boronic acid + aryl halide + CO) to prepare asymmetric substimted kehmes [70]. One of the main drawbacks of this methodology is the direct couphng reaction, which forms biaryl products without carbon monoxide insertion, particularly with electron-deficient aryl haUdes. [Pg.176]

An alternate approach to the formation of pyridylboronic acids is the cross-coupling of a halopyridine with a diboronate ester (usually bis(pinacolato)diboron, 7.7.)9 The analogous reaction of 2-chloropyridine led to pyridine formation through protodeboronation. The product of the reaction, either after hydrolysis to the boronic acid or in the ester form, can be further reacted with another aryl halide to give a biaryl. In certain cases the reaction might also be carried out in a one-pot manner.10... [Pg.140]

The Suzuki reaction (the palladium-catalyzed cross-coupling of aryl halides with boronic acids) is arguably one of the most versatile and at the same time also one of the most often used cross-coupling reactions in modern organic synthesis [32], Carrying out high-speed Suzuki reactions under controlled microwave conditions can today be considered almost a routine synthetic procedure, given the enormous literature precedent for this transformation [7]. [Pg.114]

Several microwave-assisted protocols for soluble polymer-supported syntheses have been described. Among the first examples of so-called liquid-phase synthesis were aqueous Suzuki couplings. Schotten and coworkers presented the use of polyethylene glycol (PEG)-bound aryl halides and sulfonates in these palladium-catalyzed cross-couplings [70]. The authors demonstrated that no additional phase-transfer catalyst (PTC) is needed when the PEG-bound electrophiles are coupled with appropriate aryl boronic acids. The polymer-bound substrates were coupled with 1.2 equivalents of the boronic acids in water under short-term microwave irradiation in sealed vessels in a domestic microwave oven (Scheme 7.62). Work-up involved precipitation of the polymer-bound biaryl from a suitable organic solvent with diethyl ether. Water and insoluble impurities need to be removed prior to precipitation in order to achieve high recoveries of the products. [Pg.338]

In addition, arylthiophene 70 was obtained by a one-pot Suzuki coupling of p-methoxyiodobenzene and 3-bromothiophene via an in situ boronate formation using one equivalent of the thermally stable diborane 69 [55], This method avoids the isolation of boronic acids and is advantageous when base-sensitive groups such as aldehyde, nitriles and esters are present. However, the cross-coupling yields are low when both aryl halides are electron-poor because of competitive homocoupling during the reaction. [Pg.243]

The palladium-catalyzed coupling of boronic acids with aryl and alkenyl halides, the Suzuki reaction, is one of the most efficient C-C cross-coupling processes used in reactions on polymeric supports. These coupling reactions requires only gentle heating to 60-80 °C and the boronic acids used are nontoxic and stable towards air and water. The mild reaction conditions have made this reaction a powerful and widely used tool in the organic synthesis. When the Suzuki reaction is transferred to a solid support, the boronic add can be immobilized or used as a liquid reactant Carboni and Carreaux recently reported the preparation of the macroporous support that can be employed to efficiently immobilize and transform functionalized arylboronic adds (Scheme 3.12) [107, 246, 247]. [Pg.166]

Phosphoric acids 3 bearing different aromatic substituents at the 3,3 -positions can be synthesized in a few steps starting from commercially available BINOL (6) (Scheme 3). The key step involves a palladium-catalyzed cross-coupling of boronic acid 7 and the respective aryl halide. Both the electronic and steric properties of potential catalyst 3 can be tuned by a proper choice of the substituents at the 3,3 -positions. Besides a simple phenyl group, Akiyama et al. introduced monosubsti-tuted phenyl derivatives as well as a mesityl group, whereas Terada and coworkers focused on substituents such as biphenyl or 4-(2-naphthyl)-phenyl. [Pg.399]

The overall mechanism is closely related to that of the other cross-coupling methods. The aryl halide or triflate reacts with the Pd(0) catalyst by oxidative addition. The organoboron compound serves as the source of the second organic group by transmetala-tion. The disubstituted Pd(II) intermediate then undergoes reductive elimination. It appears that either the oxidative addition or the transmetalation can be rate-determining, depending on reaction conditions.134 With boronic acids as reactants, base catalysis is normally required and is believed to involve the formation of the more reactive boronate anion.135... [Pg.515]

The Suzuki coupling of aryl halides was also extended to tosylates recently. Benzothiazole 5-tosylate reacted with m-xylene-2-boronic acid (6.13.) to give the coupled product in 94% yield using palladium acetate and a stericly congested biphenyl based phosphine ligand as catalyst.17 Another class of less commonly utilised cross-coupling partners are methyltio derivatives. In the presence of a copper salt, which activates the carbon-sulphur bond, 2-methyltio-benzotiazol coupled readily with a series of arylboronic acids.18... [Pg.102]

Preparation of Biaryls via Pd(0) Catalyzed Cross-Coupling of Boronic Acids with Aryl Halides ... [Pg.60]

The Suzuki coupling reaction is a powerful tool for carbon-carbon bond formation in combinatorial library production.23 Many different reaction conditions and catalyst systems have been reported for the cross-coupling of aryl triflates and aromatic halides with boronic acids in solution. After some experimentation, we found that the Suzuki cleavage of the resin-bound perfluoroalkylsulfonates proceeded smoothly by using [l,l -bis (diphenylphosphino)ferrocene]dichloropalladium(II), triethylamine, and boronic acids in dimethylformamide at 80° within 8 h afforded the desired biaryl compounds in good yields.24 The desired products are easily isolated by a simple two-phase extraction process and purified by preparative TLC to give the biaryl compounds in high purity, as determined by HPLC, GC-MS, and LC-MS analysis. [Pg.177]

The Suzuki Coupling, which is the palladium-catalysed cross coupling between organoboronic acid and halides. Recent catalyst and methods developments have broadened the possible applications enormously, so that the scope of the reaction partners is not restricted to aryls, but includes alkyls, alkenyls and alkynyls. Potassium trifluoroborates and organoboranes or boronate esters may be used in place of boronic acids. Some pseudohalides (for example triflates) may also be used as coupling partners. [Pg.226]

Palladium(0)-catalyzed cross-coupling reactions between organic electrophiles (usually vinyl or aryl halides or triflates) and a variety of organometallic reagents and boronic acids have become a popular... [Pg.183]


See other pages where Boronic acids aryl halide cross-coupling is mentioned: [Pg.484]    [Pg.217]    [Pg.361]    [Pg.340]    [Pg.217]    [Pg.241]    [Pg.905]    [Pg.167]    [Pg.174]    [Pg.201]    [Pg.174]    [Pg.318]    [Pg.316]    [Pg.218]    [Pg.109]    [Pg.34]    [Pg.739]    [Pg.187]    [Pg.309]    [Pg.230]    [Pg.650]    [Pg.652]    [Pg.794]    [Pg.139]    [Pg.176]    [Pg.179]    [Pg.60]    [Pg.877]    [Pg.116]    [Pg.102]    [Pg.138]    [Pg.57]    [Pg.63]    [Pg.271]    [Pg.155]    [Pg.296]    [Pg.396]   


SEARCH



Acid halides

Acidic halides

Aryl acid

Aryl boronate

Aryl boronates

Aryl coupling

Aryl cross-coupling

Aryl halides cross-coupling

Aryl-borons

Boron aryls

Boron halides

Boronic acids cross-coupling

Boronic acids, arylation

Cross aryl halides

Halides boronic acids

Halides, aryl coupling

Halides, aryl, arylation coupling

© 2024 chempedia.info