Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boron alkynes

Cis-olefins or cis./rjns-dienes can be obtained from alkynes in similar reaction sequences. The alkyne is first hydroborated and then treated with alkaline iodine. If the other substituents on boron are alkyl groups, a cis-olefin is formed (G. Zweifel, 1967). If they are cir-alkenyls, a cis, trans-diene results. The reactions are thought to be iodine-assisted migrations of the cis-alkenyl group followed by (rans-deiodoboronation (G. Zweifel, 1968). Trans, trans-dienes are made from haloalkynes and alkynes. These compounds are added one after the other to thexylborane. The alkenyl(l-haloalkenyl)thexylboranes are converted with sodium methoxide into trans, trans-dienes (E. Negishi, 1973). The thexyl group does not migrate. [Pg.37]

The iodination reaction can also be conducted with iodine monochloride in the presence of sodium acetate (240) or iodine in the presence of water or methanolic sodium acetate (241). Under these mild conditions functionalized alkenes can be transformed into the corresponding iodides. AppHcation of B-alkyl-9-BBN derivatives in the chlorination and dark bromination reactions allows better utilization of alkyl groups (235,242). An indirect stereoselective procedure for the conversion of alkynes into (H)-1-ha1o-1-alkenes is based on the mercuration reaction of boronic acids followed by in situ bromination or iodination of the intermediate mercuric salts (243). [Pg.315]

Both ( )- and (Z)-l-halo-l-alkenes can be prepared by hydroboration of 1-alkynes or 1-halo-l-alkynes followed by halogenation of the intermediate boronic esters (244,245). Differences in the addition—elimination mechanisms operating in these reactions lead to the opposite configurations of iodides as compared to bromides and chlorides. [Pg.315]

An alternative synthesis of (Z)-l-halo-l-alkenes involves hydroboration of 1-halo-l-alkynes, followed by protonolysis (246,247). Disubstituted ( )-and (Z)-a1keny1 bromides can be prepared from ( )- and (Z)-a1keny1 boronic esters, respectively, by treatment with bromine followed by base (248). [Pg.315]

Iminoboranes, R-N=B-R, are isoelectronic with alkynes and contain 2-coordinate boron their chemistry has recently been review-... [Pg.210]

The metal catalysed hydroboration and diboration of alkenes and alkynes (addition of H-B and B-B bonds, respectively) gives rise to alkyl- or alkenyl-boronate or diboronate esters, which are important intermediates for further catalytic transformations, or can be converted to useful organic compounds by established stoichiometric methodologies. The iyn-diboration of alkynes catalysed by Pt phosphine complexes is well-established [58]. However, in alkene diborations, challenging problems of chemo- and stereo-selectivity control stiU need to be solved, with the most successful current systems being based on Pt, Rh and An complexes [59-61]. There have been some recent advances in the area by using NHC complexes of Ir, Pd, Pt, Cu, Ag and Au as catalysts under mild conditions, which present important advantages in terms of activity and selectivity over the established catalysts. [Pg.38]

This reaction typifies the two possibilities of reaction routes for M-catalyzed addition of an S-X (or Se-X) bond to alkyne (a) oxidative addition of the S-X bond to M(0) to form 94, (b) insertion of alkyne into either the M-S or M-X bond to provide 95 or 96 (c) C-X or C-S bond-forming reductive elimination to give 97 (Scheme 7-21). Comparable reaction sequences are also discussed when the Chalk-Harrod mechanism is compared with the modified Chalk-Harrod mechanism in hydrosily-lations [1,3]. The palladium-catalyzed thioboratiori, that is, addition of an S-B bond to an alkyne was reported by Miyaura and Suzuki et al. to furnish the cis-adducts 98 with the sulfur bound to the internal carbon and the boron center to the terminal carbon (Eq. 7.61) [62]. [Pg.242]

Several methods for stereoselective alkene synthesis are based on boron intermediates. One approach involves alkenylboranes, which can be prepared from terminal alkynes. Procedures have been developed for the synthesis of both Z- and E-alkenes. [Pg.793]

Petasis reported an efficient addition of vinyl boronic acid to iminium salts.92 While no reaction was observed when acetonitrile was used as solvent, the reaction went smoothly in water to give allyl amines (Eq. 11.54). The reaction of the boron reagent with iminium ions generated from glyoxylic acid and amines affords novel a-amino acids (Eq. 11.55). Carboalumination of alkynes in the presence of catalytic Cp2ZrCl2 and H2O affords vinylalane intermediates, which serve as nucleophiles in the subsequent addition to enantiomerically enriched... [Pg.359]

Relevant complexes have been isolated and fully characterized (4-10, 13-lb). The resulting arylpalladium complex 8 is able to react with various compounds such as terminal alkenes, alkynes, aryl boronic acids or hydrogen-transfer agents to give an organic molecule and palladium(O) (3, 17, 18). [Pg.450]

An intriguing annulation has been observed upon treatment of a Zr(II)-borata-benzene complex with an alkyne (Scheme 23).38 This reaction is believed to proceed through generation of the normal metallacyclopentadiene intermediate, followed by migration of the Zr—C bond to the electrophilic boron, and then formation of the C—C bond. Both the starting Zr(II) complex and the annulation product have been crystallographically characterized. [Pg.113]

Precise placement of metal complexing sites within the infrastructure of a cascade molecule is of importance from a variety of perspectives. In the construction of the above noted Micellane family (cf. Sect. 3.1), we reported the construction of dendrimers with four alkyne moieties at sites equidistant from each other in the interior (17, Fig. 8) [60]. These were treated with decaborane (B10H14) to afford 1,2-dicarba-closo-dodecaboranes (o-carboranes) [71]. Rendering boron clusters soluble in water is of interest because of their use in cancer treatment by Boron Neutron Cancer Therapy. First and second generation water-soluble dendrimers containing four and twelve precisely located boron cluster sites, respectively, were synthesized (e.g., 18). These water soluble dendrimers and their precursors were characterized by 13C-, and nB-NMR spectroscopy (Fig. 8). [Pg.41]

Recently, Larock and coworkers used a domino Heck/Suzuki process for the synthesis of a multitude of tamoxifen analogues [48] (Scheme 6/1.20). In their approach, these authors used a three-component coupling reaction of readily available aryl iodides, internal alkynes and aryl boronic acids to give the expected tetrasubsti-tuted olefins in good yields. As an example, treatment of a mixture of phenyliodide, the alkyne 6/1-78 and phenylboronic acid with catalytic amounts of PdCl2(PhCN)2 gave 6/1-79 in 90% yield. In this process, substituted aryl iodides and heteroaromatic boronic acids may also be employed. It can be assumed that, after Pd°-cata-lyzed oxidative addition of the aryl iodide, a ds-carbopalladation of the internal alkyne takes place to form a vinylic palladium intermediate. This then reacts with the ate complex of the aryl boronic acid in a transmetalation, followed by a reductive elimination. [Pg.372]

Using Pd-mediated cross-coupling reactions, such as Suzuki, Heck, and Sonoga-shira- Hagihara reaction, researchers efficiently constructed a library of 151 coumarin derivatives from eight 3-bromocoumarins cross-coupled with ten aryl/heteroaryl boronic acids, ten alkenes, and ten alkynes (Fig. 4). [Pg.154]

A rapid MW-assisted palladium-catalyzed coupling of heteroaryl and aryl boronic acids with iodo- and bromo-substituted benzoic acids, anchored on TentaGel has been achieved [174]. An environmentally friendly Suzuki cross-coupling reaction has been developed that uses polyethylene glycol (PEG) as the reaction medium and palladium chloride as a catalyst [175]. A solventless Suzuki coupling has also been reported on palladium-doped alumina in the presence of potassium fluoride as a base [176], This approach has been extended to Sonogashira coupling reaction wherein terminal alkynes couple readily with aryl or alkenyl iodides on palladium-doped alumina in the presence of triphenylphosphine and cuprous iodide (Scheme 6.52) [177]. [Pg.210]


See other pages where Boron alkynes is mentioned: [Pg.209]    [Pg.311]    [Pg.313]    [Pg.313]    [Pg.316]    [Pg.261]    [Pg.264]    [Pg.150]    [Pg.266]    [Pg.1289]    [Pg.724]    [Pg.132]    [Pg.144]    [Pg.12]    [Pg.7]    [Pg.21]    [Pg.23]    [Pg.25]    [Pg.300]    [Pg.353]    [Pg.1240]    [Pg.124]    [Pg.187]    [Pg.24]    [Pg.366]    [Pg.308]    [Pg.48]    [Pg.372]    [Pg.166]    [Pg.170]    [Pg.305]    [Pg.462]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.3 , Pg.3 , Pg.3 , Pg.3 , Pg.4 , Pg.5 , Pg.10 ]

See also in sourсe #XX -- [ Pg.2 , Pg.4 , Pg.23 , Pg.23 , Pg.53 , Pg.53 ]




SEARCH



© 2024 chempedia.info