Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Borane, derivatives addition reactions with aldehydes

This topological rule readily explained the reaction product 211 (>90% stereoselectivity) of open-chain nitroolefins 209 with open-chain enamines 210. Seebach and Golinski have further pointed out that several condensation reactions can also be rationalized by using this approach (a) cyclopropane formation from olefin and carbene, (b) Wittig reaction with aldehydes yielding cis olefins, (c) trans-dialkyl oxirane from alkylidene triphenylarsane and aldehydes, (d) ketenes and cyclopentadiene 2+2-addition, le) (E)-silyl-nitronate and aldehydes, (f) syn and anti-Li and B-enolates of ketones, esters, amides and aldehydes, (g) Z-allylboranes and aldehydes, (h) E-alkyl-borane or E-allylchromium derivatives and aldehydes, (i) enamine from cyclohexanone and cinnamic aldehyde, (j) E-enamines and E-nitroolefins and finally, (k) enamines from cycloalkanones and styryl sulfone. [Pg.323]

Silyl enol ethers react with aldehydes in the presence of chiral boranes or other additives " to give aldols with good asymmetric induction (see the Mukaiyama aldol reaction in 16-35). Chiral boron enolates have been used. Since both new stereogenic centers are formed enantioselectively, this kind of process is called double asymmetric synthesis Where both the enolate derivative and substrate were achiral, carrying out the reaction in the presence of an optically active boron compound ° or a diamine coordinated with a tin compound ° gives the aldol product with excellent enantioselectivity for one stereoisomer. Formation of the magnesium enolate anion of a chiral amide, adds to aldehydes to give the alcohol enantioselectively. [Pg.1348]

While this reaction is formally analogous to the addition of allylboranes to carbonyl derivatives, it does not appear to occur through a cyclic transition state. This is because, in contrast to the boranes, the silicon in allylic silanes has no Lewis acid character and would not be expected to coordinate at the carbonyl oxygen. The stereochemistry of addition of allylic silanes to carbonyl compounds is consistent with an acyclic transition state. Both the E- and Z-stereoisomers of 2-butenyl(trimethyl)silane react with aldehydes to give the product in which the newly formed hydroxyl group is syn to the methyl substituent. The preferred orientation of approach by the silane minimizes interaction between the aldehyde substituent R and the terminal methyl group. [Pg.467]

Paterson et al. [98] in their attempt used a similar disconnection for rhizopodin as described by Menche (fragments 144 and 149) (Scheme 2.151). However, unlike, Menche, they used silyl ketene acetal 16 in an asynunetric VMAR for the addition to ( )-iodoacrolein (142) to obtain dioxinone 143 in 94% ee. Methanolysis removed the aceto-nide, and the subsequent Narasaka reduction [99] provided the syn-diol 144 in 80% yield and a 10 1 selectivity for the desired isomer. The synthesis of segment 149 started with aldehyde 145, which was ultimately derived from Roche ester. Carbon chain extension was achieved through a chelation-controlled Mukaiyama aldol reaction with silyl ketene acetal 146, which installed the new chiral center with excellent stereocontrol (20 1 dr). For the installation of the third secondary alcohol, six-membered lactone 148 was obtained by treatment with K COj in methanol. Subsequent borane reduction provided stereospecifically the desired alcohol, which was then further transformed to the desired acid (149). [Pg.119]

In 2003, Rawal reported the use of TADDOLs 177 as chiral H-bonding catalysts to facilitate highly enantioselec-tive hetero-Diels-Alder reactions between dienes 181 and different aldehydes 86 (Scheme 6.29A) [82], and also BINOL-based catalysts 178 were found to facilitate this reaction with excellent selectivities [83]. TADDOLs were also successfully used as organocatalysts for other asymmetric transformations like Mukaiyama aldol reactions, nitroso aldol reactions, or Strecker reactions to mention a few examples only [84]. In addition, also BINOL derivatives have been employed as efficient chiral H-bonding activators as exemplified in the Morita-Baylis-Hilhnan reaction of enone 184 with different carbaldehydes 86 [85]. The use of chiral squaramides for asymmetric reactions dates back to 2005 when Xie et al. first used camphor-derived squaric amino alcohols as ligands in borane reductions [86]. The first truly organocatalytic application was described by Rawal et al. in 2008 who found that minute amounts of the bifunctional cinchona alkaloid-based squaramide 180 are... [Pg.217]

Chiral boranes have been recommended as Lewis acids catalysts by Reetz [689], Yamamoto [787, 788], Kiyooka [795, 1302], Masamune and their coworicers [796, 797], These groups used, respectively, boranes 2.61, 3.9 (R = H, R = /-Pr), 3.10 (R = i-Pr or tert-Bu, R = H) and derivatives of 3.12 and 3.13. These boranes are very efficient catalysts in asymmetric additions of symmetrically substituted ketene silylacetals 6.113 to aldehydes (Figure 6.94). Similar reactions can also be conducted with enoxysilanes derived from methylketones or from tert-Bu thiolacetate [787, 794, 796], Oxazaborolidine 3.10 derived from tryptophan 3.11 is also a very potent catalyst [794],... [Pg.348]

Yamamoto developed a remarkable boron-derived catalyst for enantioselec-tive Diels-Alder reactions which is easily assembled from monoacylated tartaric acid and borane. Spectroscopic data provided evidence that supports the proposed catalyst structure 144 depicted in Equation 16 [79, 80]. Such chiral (acyloxy)borane (CAB) catalysts have been employed in numerous cyclo-additions with unsaturated aldehydes to afford the corresponding products, such as 145, with high selectivity (98% ee, endo exo > 99 1) [80]. [Pg.566]


See other pages where Borane, derivatives addition reactions with aldehydes is mentioned: [Pg.21]    [Pg.107]    [Pg.15]    [Pg.1337]    [Pg.57]    [Pg.1008]    [Pg.617]    [Pg.244]    [Pg.523]    [Pg.476]    [Pg.759]    [Pg.25]    [Pg.320]    [Pg.1031]    [Pg.803]    [Pg.470]    [Pg.237]    [Pg.29]    [Pg.979]    [Pg.315]    [Pg.193]    [Pg.571]    [Pg.218]    [Pg.153]    [Pg.158]    [Pg.422]    [Pg.139]   
See also in sourсe #XX -- [ Pg.797 , Pg.798 , Pg.799 , Pg.800 , Pg.801 , Pg.802 , Pg.803 , Pg.804 , Pg.805 , Pg.806 , Pg.807 , Pg.808 ]




SEARCH



Addition aldehydes

Addition derivatives

Addition reactions derivatives

Aldehydes deriv

Aldehydes derivatives

Borane addition

Borane deriv

Borane reactions

Borane reactions with aldehydes

Borane, derivatives

Borane, with

Boranes addition

Boranes reaction with

Boranes reactions

Boranes reactions with aldehydes

Reaction with borane

With boranes

© 2024 chempedia.info