Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond cleavage kinetics

The voltammetric data and other relevant kinetic and thermodynamic information are summarized in Table 2. While for X = H the initial ET controls the electrode rate, as indicated by the rather large p shift and peak width, the electrode process is, at low scan rates, under mixed ET-bond cleavage kinetic control (see Section 2) for X = Ph, and CN. Although the voltammetric reduction of these ethers is irreversible, in the case of the COMe derivative, some reversibility starts to show up at 500 Vs in fact, this reduction features a classical case of Nernstian ET followed by a first-order reaction. The reduction of the nitro derivative is reversible even at very low scan rate although, on a much longer timescale, this radical anion also decays. [Pg.108]

According to a kinetic study which included (56), (56a) and some oxaziridines derived from aliphatic aldehydes, hydrolysis follows exactly first order kinetics in 4M HCIO4. Proton catalysis was observed, and there is a linear correlation with Hammett s Ho function. Since only protonated molecules are hydrolyzed, basicities of oxaziridines ranging from pii A = +0.13 to -1.81 were found from the acidity rate profile. Hydrolysis rates were 1.49X 10 min for (56) and 43.4x 10 min for (56a) (7UCS(B)778). O-Protonation is assumed to occur, followed by polar C—O bond cleavage. The question of the place of protonation is independent of the predominant IV-protonation observed spectroscopically under equilibrium conditions all protonated species are thermodynamically equivalent. [Pg.207]

A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

A kinetic isotope effect that is a result of the breaking of the bond to the isotopic atom is called a primary kinetic isotope effect. Equation (6-88) is, therefore, a very simple and approximate relationship for the maximum primary kinetic isotope effect in a reaction in which only bond cleavage occurs. Table 6-5 shows the results obtained when typical vibrational frequencies are used in Eq. (6-88). Evidently the maximum isotope effect is predicted to be very substantial. [Pg.295]

Furthermore, Cordes etal995 observed the saturation-type kinetics, strongly suggesting the formation of a complex between the polyelectrolyte and ester preceding bond cleavage reactions, as has been found for micellar catalysis11,1015. [Pg.159]

Important additional evidence for aryl cations as intermediates comes from primary nitrogen and secondary deuterium isotope effects, investigated by Loudon et al. (1973) and by Swain et al. (1975 b, 1975 c). The kinetic isotope effect kH/ki5 measured in the dediazoniation of C6H515N = N in 1% aqueous H2S04 at 25 °C is 1.038, close to the calculated value (1.040-1.045) expected for complete C-N bond cleavage in the transition state. It should be mentioned, however, that a partial or almost complete cleavage of the C — N bond, and therefore a nitrogen isotope effect, is also to be expected for an ANDN-like mechanism, but not for an AN + DN mechanism. [Pg.169]

There is no clear reason to prefer either of these mechanisms, since stereochemical and kinetic data are lacking. Solvent effects also give no suggestion about the problem. It is possible that the carbon-carbon bond is weakened by an increasing number of phenyl substituents, resulting in more carbon-carbon bond cleavage products, as is indeed found experimentally. All these reductive reactions of thiirane dioxides with metal hydrides are accompanied by the formation of the corresponding alkenes via the usual elimination of sulfur dioxide. [Pg.421]

Moreover, it is possible to open racemic azlactones by acyl bond cleavage to form protected amino acids in a dynamic kinetic resolution process. As azlactones suffer a fast racemization under the reaction conditions, eventually all starting material is converted [115]. [Pg.170]

Both schemes accommodate the kinetics, the primary isotope effect and the induction factor, which indicates that Cr(IV) is the initial stage of reduction of the oxidant. RoCek s mechanism does not accord with the solvent isotope effect of 2.5 per proton, which has just the value to be expected for acid-catalysis, for the O-H bond cleavage should be subject to a primary isotope effect of about 7. The ester mechanism is not open to this criticim. [Pg.303]

A kinetic isotope effect 160/180 of 2% in the spontaneous hydrolysis of the 2,4-dinitrophenyl phosphate dianion, whose ester oxygen is labeled, suggests a P/O bond cleavage in the transition state of the reaction, and thus also constitutes compelling evidence for formation of the metaphosphate 66,67). The hydrolysis behavior of some phosphoro-thioates (110) is entirely analogous 68). [Pg.96]

Recently, we have demonstrated another sort of homogeneous sonocatalysis in the sonochemical oxidation of alkenes by O2. Upon sonication of alkenes under O2 in the presence of Mo(C0) , 1-enols and epoxides are formed in one to one ratios. Radical trapping and kinetic studies suggest a mechanism involving initial allylic C-H bond cleavage (caused by the cavitational collapse), and subsequent well-known autoxidation and epoxidation steps. The following scheme is consistent with our observations. In the case of alkene isomerization, it is the catalyst which is being sonochemical activated. In the case of alkene oxidation, however, it is the substrate which is activated. [Pg.204]

Indeed, the (200-fs) laser excitation of the EDA complexes of various benz-pinacols with methyl viologen (MV2+) confirms the formation of all the transient species in equation (59). A careful kinetic analysis of the decay rates of pinacol cation radical and reduced methyl viologen leads to the conclusion that the ultrafast C—C bond cleavage (kc c = 1010 to 1011 s- ) of the various pinacol cation radicals competes effectively with the back electron transfer in the reactive ion pair. [Pg.256]

Most importantly, the careful kinetic analysis of the rise and decay of the transient species in equation (69) shows that the decarboxylation of Ph2C(OH)CO occurs within a few picoseconds (kc c = (2-8) x 1011 s-1). The observation of such ultrafast (decarboxylation) rate constants, which nearly approach those of barrier-free unimolecular reactions, suggests that the advances in time-resolved spectroscopy can be exploited to probe the transition state for C—C bond cleavages via charge-transfer photolysis. [Pg.260]


See other pages where Bond cleavage kinetics is mentioned: [Pg.155]    [Pg.106]    [Pg.221]    [Pg.678]    [Pg.155]    [Pg.106]    [Pg.221]    [Pg.678]    [Pg.20]    [Pg.135]    [Pg.13]    [Pg.632]    [Pg.295]    [Pg.214]    [Pg.783]    [Pg.316]    [Pg.375]    [Pg.668]    [Pg.439]    [Pg.455]    [Pg.54]    [Pg.172]    [Pg.87]    [Pg.89]    [Pg.92]    [Pg.95]    [Pg.668]    [Pg.25]    [Pg.167]    [Pg.349]    [Pg.89]    [Pg.24]    [Pg.124]    [Pg.18]    [Pg.34]    [Pg.106]    [Pg.206]    [Pg.247]   
See also in sourсe #XX -- [ Pg.8 , Pg.11 , Pg.20 , Pg.22 ]




SEARCH



© 2024 chempedia.info