Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bond and bonding rotation

The strong dependence of the PES on molecular orientation also leads to strong coupling between rotational states, and hence rotational excitation/de-excitation in the scattering. This has been observed experimentally for H2 scattering from Cu surfaces. Recent work has shown that for H2 the changes m rotational state occur almost exclusively when the molecular bond is extended, that is, longer than the gas-phase equilibrium value [ ]. [Pg.910]

The carbon atoms of the double bond have a trigonal planar configuration and free rotation about the C—C bond is prevented by the n bond. The inability to rotate means that geometrical isomers can be produced, with substituents a and b, thus ... [Pg.173]

Rosenbluth algorithm can also be used as the basis for a more efficient way to perform ite Carlo sampling for fully flexible chain molecules [Siepmann and Frenkel 1992], ch, as we have seen, is difficult to do as bond rotations often give rise to high energy rlaps with the rest of the system. [Pg.462]

In a systematic search there is a defined endpoint to the procedure, which is reached whe all possible combinations of bond rotations have been considered. In a random search, ther is no natural endpoint one can never be absolutely sure that all of the minimum energ conformations have been found. The usual strategy is to generate conformations until n new structures can be obtained. This usually requires each structure to be generate many times and so the random methods inevitably explore each region of the conformc tional space a large number of times. [Pg.483]

FIGURE 3 4 Potential energy diagram for rotation about the carbon-carbon bond in ethane Two of the hydrogens are shown in red and four in green so as to indicate more clearly the bond rotation... [Pg.107]

For molecules and ions having more than one atom, the extra energy can make the component bonds rotate and vibrate faster (rovibrational energy). Isolated atoms, having no bonds, cannot be excited in this way. [Pg.387]

The three bands in Figure 9.46 show resolved rotational stmcture and a rotational temperature of about 1 K. Computer simulation has shown that they are all Ojj bands of dimers. The bottom spectmm is the Ojj band of the planar, doubly hydrogen bonded dimer illustrated. The electronic transition moment is polarized perpendicular to the ring in the — Ag, n — n transition of the monomer and the rotational stmcture of the bottom spectmm is consistent only with it being perpendicular to the molecular plane in the dimer also, as expected. [Pg.397]

The microwave spectrum of isothiazole shows that the molecule is planar, and enables rotational constants and NQR hyperfine coupling constants to be determined (67MI41700>. The total dipole moment was estimated to be 2.4 0.2D, which agrees with dielectric measurements. Asymmetry parameters and NQR coupling constants show small differences between the solid and gaseous states (79ZN(A)220>, and the principal dipole moment axis approximately bisects the S—N and C(4)—C(5) bonds. [Pg.136]

Thiirane 1,1-dioxides extrude sulfur dioxide readily (70S393) at temperatures usually in the range 50-100 °C, although some, such as c/s-2,3-diphenylthiirane 1,1-dioxide or 2-p-nitrophenylthiirane 1,1-dioxide, lose sulfur dioxide at room temperature. The extrusion is usually stereospeciflc (Scheme 10) and a concerted, non-linear chelotropic expulsion of sulfur dioxide or a singlet diradical mechanism in which loss of sulfur dioxide occurs faster than bond rotation may be involved. The latter mechanism is likely for episulfones with substituents which can stabilize the intermediate diradical. The Ramberg-Backlund reaction (B-77MI50600) in which a-halosulfones are converted to alkenes in the presence of base, involves formation of an episulfone from which sulfur dioxide is removed either thermally or by base (Scheme 11). A similar conversion of a,a -dihalosulfones to alkenes is effected by triphenylphosphine. Thermolysis of a-thiolactone (5) results in loss of carbon monoxide rather than sulfur (Scheme 12). [Pg.141]

One part of the molecule (dark blue and red) rotates 180° around a double bond between two carbon atoms (green). The geometry of the molecule is changed by this rotation from a trans form to a cis form. Carbon atoms are blue, hydrogen atoms gray and the oxygen atom red. [Pg.227]

Figure 4.3. Energy versus bond rotation in methylsuccinic acid (schematic). The diagram shows the greater stability of staggered as compared with eclipsed forms, and the effect of size and dipole moment of substituents on the barriers. The slope of the curve at any point represents the force opposing rotation there. ( = energy of activation of rotation.) (After Gordon )... Figure 4.3. Energy versus bond rotation in methylsuccinic acid (schematic). The diagram shows the greater stability of staggered as compared with eclipsed forms, and the effect of size and dipole moment of substituents on the barriers. The slope of the curve at any point represents the force opposing rotation there. ( = energy of activation of rotation.) (After Gordon )...
It has been common practice to blend plasticisers with certain polymers since the early days of the plastics industry when Alexander Parkes introduced Parkesine. When they were first used their function was primarily to act as spacers between the polymer molecules. Less energy was therefore required for molecular bond rotation and polymers became capable of flow at temperatures below their decomposition temperature. It was subsequently found that plasticisers could serve two additional purposes, to lower the melt viscosity and to change physical properties of the product such as to increase softness and flexibility and decrease the cold flex temperature (a measure of the temperature below which the polymer compound loses its flexibility). [Pg.131]

In addition to constitution and configuration, there is a third important level of structure, that of conformation. Conformations are discrete molecular arrangements that differ in spatial arrangement as a result of facile rotations about single bonds. Usually, conformers are in thermal equilibrium and cannot be separated. The subject of conformational interconversion will be discussed in detail in Chapter 3. A special case of stereoisomerism arises when rotation about single bonds is sufficiently restricted by steric or other factors that- the different conformations can be separated. The term atropisomer is applied to stereoisomers that result fk m restricted bond rotation. ... [Pg.76]

Sketch a potential energy diagram for rotation around a carbon-carbon bond in propane. Clearly identify each potential energy maximum and minimum with a structural formula that shows the conformation of propane at that point. Does your diagram more closely resemble that of ethane or of butane Would you expect the activation energy for bond rotation in propane to be more than or less than that of ethane Of butane ... [Pg.110]

FIGURE 12.14 Comparison of the deoxy-guanosine conformation in B- and Z-DNA. In B-DNA, the Cl -N-9 glycosyl bond is always in the anti position (lefi). In contrast, in the left-handed Z-DNA structure, this bond rotates (as shown) to adopt the syn conformation. [Pg.369]

Ring inversion, leading to interconversion of different ring conformers, is typically as facile a process as single-bond rotation. Particularly important are six-membered rings, where interconversion leads to interchange of axial and equatorial positions. [Pg.81]

Next, examine the equilibrium structure of acetamide (see also Chapter 16, Problem 8). Are the two NH protons in different chemical environments If so, would you expect interconversion to be easy or difficult Calculate the barrier to interconversion (via acetamide rotation transition state). Rationalize your result. Hint Examine the highest-occupied molecular orbital (HOMO) for both acetamide and its rotation transition state. Does the molecule incorporate a n bond. If so, is it disrupted upon rotation ... [Pg.148]


See other pages where Bond and bonding rotation is mentioned: [Pg.145]    [Pg.9]    [Pg.162]    [Pg.163]    [Pg.157]    [Pg.157]    [Pg.159]    [Pg.1233]    [Pg.518]    [Pg.24]    [Pg.183]    [Pg.184]    [Pg.192]    [Pg.408]    [Pg.439]    [Pg.35]    [Pg.50]    [Pg.110]    [Pg.550]    [Pg.226]    [Pg.88]    [Pg.60]    [Pg.440]    [Pg.2]    [Pg.690]    [Pg.774]    [Pg.70]    [Pg.999]    [Pg.367]    [Pg.75]    [Pg.76]    [Pg.200]    [Pg.227]    [Pg.29]    [Pg.221]    [Pg.8]   
See also in sourсe #XX -- [ Pg.36 ]




SEARCH



And bond rotation

And bond rotation

Bond lengths and rotational

Bond lengths and rotational barriers

Bond rotation

Bonding Multiplicity and Internal Rotation

Effects of Internal Rotation and Bond Stretching

Rotatable Bonds, Unsaturations, Rings, Chains and Ring Topology

Rotatable bonds

Rotation about Sigma (a) Bonds in Acyclic Alkanes, Alkenes, Alkynes, and Alkyl-Substituted Arenes

Rotational Constants. Bond Distances and Angles

Sigma bonds and bond rotation

© 2024 chempedia.info