Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Blue peptides

The sequences of the four tetrapeptides shown m red m Figure 27 10 bridge the gaps between three of the four blue peptides to give an unbroken sequence from 1 through 24... [Pg.1132]

Pepsin catalyzed hydrolysis gave the four peptides shown m blue m Figure 27 10 (Their sequences were determined m separate experiments) These four peptides contain 27 of the 30 ammo acids m the B chain but there are no points of over lap between them... [Pg.1132]

The major stmctural feature of the HAz chain (blue in Figure 5.20) is a hairpin loop of two a helices packed together. The second a helix is 50 amino acids long and reaches back 76 A toward the membrane. At the bottom of the stem there is a i sheet of five antiparallel strands. The central i strand is from HAi, and this is flanked on both sides by hairpin loops from HAz. About 20 residues at the amino terminal end of HAz are associated with the activity by which the vims penetrates the host cell membrane to initiate infection. This region, which is quite hydrophobic, is called the fusion peptide. [Pg.79]

Figure 6.21 Schematic diagram of the conformational changes of calmodulin upon peptide binding, (a) In the free form the calmodulin molecule is dumhhell-shaped comprising two domains (red and green), each having two EF hands with bound calcium (yellow), (b) In the form with bound peptides (blue) the a helix linker has been broken, the two ends of the molecule are close together and they form a compact globular complex. The internal structure of each domain is essentially unchanged. The hound peptide binds as an a helix. Figure 6.21 Schematic diagram of the conformational changes of calmodulin upon peptide binding, (a) In the free form the calmodulin molecule is dumhhell-shaped comprising two domains (red and green), each having two EF hands with bound calcium (yellow), (b) In the form with bound peptides (blue) the a helix linker has been broken, the two ends of the molecule are close together and they form a compact globular complex. The internal structure of each domain is essentially unchanged. The hound peptide binds as an a helix.
Figure 13.26 Schematic diagram of the SH2 domain from the Src tyrosine kinase with bound peptide. The SH2 domain (blue) comprises a central p sheet surrounded by two a helices. Three positively charged residues (green) are involved in binding the phosphotyrosine moiety of the bound peptide (red). (Adapted from G. Waksman et al.. Cell 72 779-790, 1993.)... Figure 13.26 Schematic diagram of the SH2 domain from the Src tyrosine kinase with bound peptide. The SH2 domain (blue) comprises a central p sheet surrounded by two a helices. Three positively charged residues (green) are involved in binding the phosphotyrosine moiety of the bound peptide (red). (Adapted from G. Waksman et al.. Cell 72 779-790, 1993.)...
Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,... Figure 17.10 Construction of a two helix truncated Z domain, (a) Diagram of the three-helix bundle Z domain of protein A (blue) bound to the Fc fragment of IgG (green). The third helix stabilizes the two Fc-binding helices, (b) Three phage-display libraries of the truncated Z-domaln peptide were selected for binding to the Fc. First, four residues at the former helix 3 interface ("exoface") were sorted the consensus sequence from this library was used as the template for an "intrafece" library, in which residues between helices 1 and 2 were randomized. The most active sequence from this library was used as a template for five libraries in which residues on the Fc-binding face ("interface") were randomized. Colored residues were randomized blue residues were conserved as the wild-type amino acid while yellow residues reached a nonwild-type consensus, [(b) Adapted from A.C. Braisted and J.A. Wells,...
Figure 17.11 Structure of EMPl dimer from x-ray crystallography. In the presence of EBP, the EMPl peptide forms a dimer. Each monomer (shown in red and blue) forms a p hairpin structure stabilized by hydrogen bonds (red dashes) and a disulfide bond (yellow). Figure 17.11 Structure of EMPl dimer from x-ray crystallography. In the presence of EBP, the EMPl peptide forms a dimer. Each monomer (shown in red and blue) forms a p hairpin structure stabilized by hydrogen bonds (red dashes) and a disulfide bond (yellow).
Figure 17.15 Schematic diagrams of the main-chain conformations of the second zinc finger domain of Zif 268 (red) and the designed peptide FSD-1 (blue). The zinc finger domain is stabilized by a zinc atom whereas FSD-1 is stabilized by hydrophobic interactions between the p strands and the a helix. (Adapted from B.I. Dahiyat and S.L. Mayo, Science 278 82-87, 1997.)... Figure 17.15 Schematic diagrams of the main-chain conformations of the second zinc finger domain of Zif 268 (red) and the designed peptide FSD-1 (blue). The zinc finger domain is stabilized by a zinc atom whereas FSD-1 is stabilized by hydrophobic interactions between the p strands and the a helix. (Adapted from B.I. Dahiyat and S.L. Mayo, Science 278 82-87, 1997.)...
Figure 18.12 The electron-density map is interpreted by fitting into it pieces of a polypeptide chain with known stereochemistry such as peptide groups and phenyl rings. The electron density (blue) is displayed on a graphics screen in combination with a part of the polypeptide chain (red) in an arbitrary orientation (a). The units of the polypeptide chain can then be rotated and translated relative to the electron density until a good fit is obtained (b). Notice that individual atoms are not resolved in such electron densities, there are instead lumps of density corresponding to groups of atoms. [Adapted from A. Jones Methods Enzym. (eds. H.W. Wyckoff, C.H. Hirs, and S.N. Timasheff) 115B 162, New York Academic Press, 1985.]... Figure 18.12 The electron-density map is interpreted by fitting into it pieces of a polypeptide chain with known stereochemistry such as peptide groups and phenyl rings. The electron density (blue) is displayed on a graphics screen in combination with a part of the polypeptide chain (red) in an arbitrary orientation (a). The units of the polypeptide chain can then be rotated and translated relative to the electron density until a good fit is obtained (b). Notice that individual atoms are not resolved in such electron densities, there are instead lumps of density corresponding to groups of atoms. [Adapted from A. Jones Methods Enzym. (eds. H.W. Wyckoff, C.H. Hirs, and S.N. Timasheff) 115B 162, New York Academic Press, 1985.]...
Amphoteric hydrophobic Blue dextran, collagen, gelatin, hydrophobic proteins Hydrophobic peptides Buffer or salt solution with organic solvent (e,g, 20% CH3CN in 0.1 M NaNOi) 35-45% CH3CN in 0.1% TFA... [Pg.114]

Peptides, for example, yield chloramine derivatives on exposure to chlorine gas these derivatives oxidize o-toluidine to a blue semiquinonoid dyestuff in the presence of acetic acid. [Pg.113]

Preparation of mixed peptide fibrils was similar for both of these labelled peptides 1% (by weight) was incubated at 37 °C with the other, unlabelled peptide in 10% CH3CN/H20atpH2.ForTTRio i9with l%dansyl-TTRio5 n5, a blue shift and dansyl anisotropy increase were observed, indicating the inclusion of dansyl-TTRios-i 15 into fibrils. CD spectroscopy proved that the stmcture was primarily p-sheet. [Pg.47]

Each functional group of an amino acid exhibits all of its characteristic chemical reactions. For carboxylic acid groups, these reactions include the formation of esters, amides, and acid anhydrides for amino groups, acylation, amidation, and esterification and for —OH and —SH groups, oxidation and esterification. The most important reaction of amino acids is the formation of a peptide bond (shaded blue). [Pg.18]

Figure 3-4. Dimensions of a fully extended polypeptide chain. The four atoms of the peptide bond (colored blue) are coplanar. The unshaded atoms are the a-carbon atom, the a-hydrogen atom, and the a-R group of the particular amino acid. Free rotation can occur about the bonds that connect the a-carbon with the a-nitrogen and with the a-carbonyl carbon (blue arrows). The extended polypeptide chain is thus a semirigid structure with two-thirds of the atoms of the backbone held in a fixed planar relationship one to another. The distance between adjacent a-carbon atoms is 0.36 nm (3.6 A). The interatomic distances and bond angles, which are not equivalent, are also shown. (Redrawn and reproduced, with permission, from Pauling L, Corey LP, Branson PIR The structure of proteins Two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 1951 37 205.)... Figure 3-4. Dimensions of a fully extended polypeptide chain. The four atoms of the peptide bond (colored blue) are coplanar. The unshaded atoms are the a-carbon atom, the a-hydrogen atom, and the a-R group of the particular amino acid. Free rotation can occur about the bonds that connect the a-carbon with the a-nitrogen and with the a-carbonyl carbon (blue arrows). The extended polypeptide chain is thus a semirigid structure with two-thirds of the atoms of the backbone held in a fixed planar relationship one to another. The distance between adjacent a-carbon atoms is 0.36 nm (3.6 A). The interatomic distances and bond angles, which are not equivalent, are also shown. (Redrawn and reproduced, with permission, from Pauling L, Corey LP, Branson PIR The structure of proteins Two hydrogen-bonded helical configurations of the polypeptide chain. Proc Natl Acad Sci U S A 1951 37 205.)...
Figure 5-8. Domain structure. Protein kinases contain two domains. The upper, amino terminal domain binds the phosphoryl donor ATP (light blue). The lower, carboxyl terminal domain is shown binding a synthetic peptide substrate (dark blue). Figure 5-8. Domain structure. Protein kinases contain two domains. The upper, amino terminal domain binds the phosphoryl donor ATP (light blue). The lower, carboxyl terminal domain is shown binding a synthetic peptide substrate (dark blue).
Figure 42-12. Structure of human proinsulin. Insulin and C-peptide molecules are connected at two sites by dipeptide links. An initial cleavage by a trypsin-like enzyme (open arrows) followed by several cleavages by a car-boxypeptidase-like enzyme (solid arrows) results in the production of the heterodimeric (AB) insulin molecule (light blue) and the C-peptide. Figure 42-12. Structure of human proinsulin. Insulin and C-peptide molecules are connected at two sites by dipeptide links. An initial cleavage by a trypsin-like enzyme (open arrows) followed by several cleavages by a car-boxypeptidase-like enzyme (solid arrows) results in the production of the heterodimeric (AB) insulin molecule (light blue) and the C-peptide.
NAP-I, NAP-2 Neutrophilactivating peptides -1 and -2 NBT Nitro-blue tetrazolium NCI Non-collagen 1 N-CAM Neural cell adhesion molecule... [Pg.284]

Fig. 2 Chemical shift perturbation and chemical shift mapping, (a) Portions of the [15N, 1H]-HSQC spectra of Bcf-xL recorded in absence (black) and in presence of each of the four molecules (in colors). Resonance assignments for amino acid residues that exhibit large shifts are reported, (b) Structure of Bc1-Xl in complex with the BH3 peptide from Bak (PDB code 1BXL) showing the chemical shift changes in Bcl-xL upon ligand binding (blue, large shits yellow, no shifts the Bak peptide is reported in cyan). Adapted from [48]... Fig. 2 Chemical shift perturbation and chemical shift mapping, (a) Portions of the [15N, 1H]-HSQC spectra of Bcf-xL recorded in absence (black) and in presence of each of the four molecules (in colors). Resonance assignments for amino acid residues that exhibit large shifts are reported, (b) Structure of Bc1-Xl in complex with the BH3 peptide from Bak (PDB code 1BXL) showing the chemical shift changes in Bcl-xL upon ligand binding (blue, large shits yellow, no shifts the Bak peptide is reported in cyan). Adapted from [48]...
Figure 10-5. Representative conformations of the (5 amyloid peptide (10-42) under different pH conditions. The conformations were obtained as centroids of the most populated clusters from the replica-exchange CPHMD folding simulations [43, 44]. The N-terminal residues 10-28 are shown in blue the C-terminal residues 29-42 are shown in red. In the most aggregation-prone state (pH 6), the side chains of the central hydrophobic cluster Leu-17, Val-18, Phe-19, Phe-20 and Ala-21 are shown as van der Waals spheres in pink, grey, cyan, purple and green, respectively... Figure 10-5. Representative conformations of the (5 amyloid peptide (10-42) under different pH conditions. The conformations were obtained as centroids of the most populated clusters from the replica-exchange CPHMD folding simulations [43, 44]. The N-terminal residues 10-28 are shown in blue the C-terminal residues 29-42 are shown in red. In the most aggregation-prone state (pH 6), the side chains of the central hydrophobic cluster Leu-17, Val-18, Phe-19, Phe-20 and Ala-21 are shown as van der Waals spheres in pink, grey, cyan, purple and green, respectively...

See other pages where Blue peptides is mentioned: [Pg.274]    [Pg.1133]    [Pg.123]    [Pg.562]    [Pg.16]    [Pg.99]    [Pg.286]    [Pg.318]    [Pg.240]    [Pg.1133]    [Pg.202]    [Pg.782]    [Pg.1016]    [Pg.1178]    [Pg.59]    [Pg.129]    [Pg.403]    [Pg.383]    [Pg.136]    [Pg.266]    [Pg.241]    [Pg.241]    [Pg.28]    [Pg.47]    [Pg.312]   
See also in sourсe #XX -- [ Pg.39 , Pg.231 ]




SEARCH



Blue cheese peptides

© 2024 chempedia.info