Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers analysis

Among the techniques employed to estimate the average molecular weight distribution of polymers are end-group analysis, dilute solution viscosity, reduction in vapor pressure, ebuUiometry, cryoscopy, vapor pressure osmometry, fractionation, hplc, phase distribution chromatography, field flow fractionation, and gel-permeation chromatography (gpc). For routine analysis of SBR polymers, gpc is widely accepted. Table 1 lists a number of physical properties of SBR (random) compared to natural mbber, solution polybutadiene, and SB block copolymer. [Pg.493]

The molecular stmcture of the copolymers is also important. Molecular-weight measurements (osmometry, gpc) and functional group analysis are useful. Block copolymers require supermolecular (morphological) stmctural information as well. A listing of typical copolymer characterization tools and methods is shown in Table 6. [Pg.187]

The polymers initiated by BP amines were found to contain about one amino end group per molecular chain. It is reasonable to consider that the combination of BP and such polymers will initiate further polymerization of vinyl monomers. We investigated the photopolymerization of MMA with BP-PMMA bearing an anilino end group as the initiation system and found an increase of the molecular weight from GPC and viscometrical measurement [91]. This system can also initiate the photopolymerization of AN to form a block copolymer, which was characterized by GPC, elemental analysis, and IR spectra. The mechanism proposed is as follows ... [Pg.240]

The distinctive properties of densely tethered chains were first noted by Alexander [7] in 1977. His theoretical analysis concerned the end-adsorption of terminally functionalized polymers on a flat surface. Further elaboration by de Gennes [8] and by Cantor [9] stressed the utility of tethered chains to the description of self-assembled block copolymers. The next important step was taken by Daoud and Cotton [10] in 1982 in a model for star polymers. This model generalizes the... [Pg.33]

AB diblock copolymers in the presence of a selective surface can form an adsorbed layer, which is a planar form of aggregation or self-assembly. This is very useful in the manipulation of the surface properties of solid surfaces, especially those that are employed in liquid media. Several situations have been studied both theoretically and experimentally, among them the case of a selective surface but a nonselective solvent [75] which results in swelling of both the anchor and the buoy layers. However, we concentrate on the situation most closely related to the micelle conditions just discussed, namely, adsorption from a selective solvent. Our theoretical discussion is adapted and abbreviated from that of Marques et al. [76], who considered many features not discussed here. They began their analysis from the grand canonical free energy of a block copolymer layer in equilibrium with a reservoir containing soluble block copolymer at chemical potential peK. They also considered the possible effects of micellization in solution on the adsorption process [61]. We assume in this presentation that the anchor layer is in a solvent-free, melt state above Tg. The anchor layer is assumed to be thin and smooth, with a sharp interface between it and the solvent swollen buoy layer. [Pg.50]

Puskas, J.E. Dendritic (arborescent) pol3tisobutylene-polystyrene block copolymers DMTA analysis and swelling studies, Polym. Mater. Sci. Eng., 91, 875-876, 2004. [Pg.218]

Branching in the polymer chain affects the relationship between retention and molecular weight.83 Universal calibration has been used with some success in branched polymers, but there are also pitfalls. Viscosimetry84-91 and other instrumental methods have proved to be useful. A computer simulation of the effects of branching on hydrodynamic volume and the detailed effects observable in GPC is available in the literature.92 93 In copolymer analysis, retention may be different for block and random copolymers, so universal calibration may be difficult. However, a UV-VIS detector, followed by a low-angle light-scattering (LALLS) detector and a differential... [Pg.330]

Table II. NMR Analysis of Poly(Dimethyl Siloxane) Content in Styrenic Graft and Block Copolymers... Table II. NMR Analysis of Poly(Dimethyl Siloxane) Content in Styrenic Graft and Block Copolymers...
This multitude of properties the polymer must possess dictate that better polymer performance will be obtained from materials with complicated structures. Such polymers are complex polymers l) random copolymers, 2) block copolymers, 3) graft copolymers, 4) micellizing copolymers, and 5) network copolymers. There has been a dramatic increase in the past decade in the number and complexity of these copolymers and a sizable number of these new products have been made from natural products. The synthesis, analysis, and testing of lignin and starch, natural product copolymers, with particular emphasis on graft copolymers designed for enhanced oil recovery, will be presented. [Pg.181]

Bravo, 1984). Hybrids of these systems, where chromatography and electrophoresis are used in each spatial dimension, were reported nearly 40 years ago (Efron, 1959). Belenkii and coworkers reported on the analysis of block copolymers by TLC (Gankina et al., 1991 Litvinova et al., 1991). Two-block copolymers of styrene and f-butyl methacrylate were separated first with regard to chemical composition by TLC at critical conditions, followed by a SEC-type separation to determine the molar masses of the components. [Pg.389]

Statistical and block copolymers based on ethylene oxide (EO) and propylene oxide (PO) are important precursors of polyurethanes. Their detailed chemical structure, that is, the chemical composition, block length, and molar mass of the individual blocks may be decisive for the properties of the final product. For triblock copolymers HO (EO) (PO)m(EO) OH, the detailed analysis relates to the determination of the total molar mass and the degrees of polymerization of the inner PPO block (m) and the outer PEO blocks (n). [Pg.403]

Figure 10.1. USAXS observation during straining of an SBS block copolymer. Right monitor Intensity maxima on an ellipse. Raw-data coordinate system (x,y) and radial cuts for data analysis are indicated. Middle Videotaping of sample. Left Stress-strain curve. Control booth of beamline BW4, HASYLAB, Hamburg... Figure 10.1. USAXS observation during straining of an SBS block copolymer. Right monitor Intensity maxima on an ellipse. Raw-data coordinate system (x,y) and radial cuts for data analysis are indicated. Middle Videotaping of sample. Left Stress-strain curve. Control booth of beamline BW4, HASYLAB, Hamburg...
GTP was employed for the synthesis of block copolymers with the first block PDMAEMA and the second PDEAEMA, poly[2-(diisopropylamino)e-thyl methacrylate], PDIPAEMA or poly[2-(N-morpholino)ethyl methacrylate], PM EM A (Scheme 33) [87]. The reactions took place under an inert atmosphere in THF at room temperature with l-methoxy-l-trimethylsiloxy-2-methyl-1-propane, MTS, as the initiator and tetra-n-butyl ammonium bibenzoate, TBABB, as the catalyst. Little or no homopolymer contamination was evidenced by SEC analysis. Copolymers in high yields with controlled molecular weights and narrow molecular weight distributions were obtained in all cases. The micellar properties of these materials were studied in aqueous solutions. [Pg.51]

Employing similar procedures, PPO-fc-POEGMA block copolymers and POEGMA-fc-PPO-fc-POEGMA triblock copolymers were prepared from the corresponding PPO macroinitiators [129]. The polymerizations were performed in a isopropanol/water (70/30) mixture at 20 °C using CuCl and bpy. The methacrylate monomer was almost quantitatively polymerized, and the polydispersities were lower than 1.25 in most cases. Less than 5% PPO homopolymer contamination was detected by SEC analysis. [Pg.70]


See other pages where Block copolymers analysis is mentioned: [Pg.26]    [Pg.29]    [Pg.26]    [Pg.29]    [Pg.148]    [Pg.149]    [Pg.151]    [Pg.591]    [Pg.637]    [Pg.97]    [Pg.33]    [Pg.47]    [Pg.66]    [Pg.29]    [Pg.50]    [Pg.51]    [Pg.64]    [Pg.66]    [Pg.185]    [Pg.204]    [Pg.555]    [Pg.15]    [Pg.137]    [Pg.452]    [Pg.701]    [Pg.272]    [Pg.272]    [Pg.41]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.62]    [Pg.63]    [Pg.78]    [Pg.82]   
See also in sourсe #XX -- [ Pg.154 , Pg.157 ]




SEARCH



Analysis of block copolymer

Copolymer analysis

Copolymer analysis copolymers

© 2024 chempedia.info