Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Birthing classes types

Types of Childbirth Education Classes 162 Birth Plans 167 Doulas 168 Packing for Labor 169 Bringing on Labor 170 Episiotomy 174 Pain Relief 179... [Pg.301]

Chapter 3 is an overview of chemical and biological nonlinear dynamics. The kinetics of several types of reactions -first order, binary, catalytic, oscillatory, etc - and of ecological interactions -predation, competition, birth and death, etc - is described, nearly always within the framework of differential equations. The aim of this Chapter is to show that, despite the great variety of mechanisms and processes occurring, a few mathematical structures appear recurrently, and archetypical simplified models can be analyzed to understand whole classes of chemical or biological phenomena. The presence of very different timescales and the associated methodology of adiabatic elimination is instrumental in recognizing that. [Pg.303]

The beginning of the twentieth century witnessed the birth of a novel class of materials, the synthetic polymers based on monomers derived from fossil resources, but the progress associated with them was relatively slow up to the Second World War and did not affect substantially the production and scope of the naturally based counterparts. Some hybrid materials, arising from the copolymerization between both types of monomers were also developed at this stage as in the case of the first alkyd resins. Interestingly, both monomers used in the first process to synthesize nylon in the late 1930s were prepared from furfural, an industrial commodity obtained from renewable resources, in a joint venture between Quaker Oats and DuPont. [Pg.2]

Figure I.6a also reveals the timeline of milestones in fuel cell design. The leftmost curve is the performance curve of the first practical H2/O2 fuel cell, built by Mond and Langer in 1889 (Mond and Langer, 1889). The electrodes consisted of thin porous leafs of Pt covered with Pt black particles with sizes of 0.1 lam. The electrol)de was a porous ceramic material, earthenware, that was soaked in sulfuric acid. The Pt loading was 2 mg cm and the current density achieved was about 0.02 A cm at a fuel cell voltage of 0.6 V. The next curve in Figure I.6a marks the birth of the PEFC, conceived by Grubb and Niedrach (Grubb and Niedrach, 1960). In this cell, a sulfonated cross-linked polystyrene membrane served as gas separator and proton conductor. However, the proton conductivity of the polystyrene PEM was too low and the membrane lifetime was too short for a wider use of this cell. It needed the invention of a new class of polymer electrolytes in the form of Nafion PFSA-type PEMs to overcome these limitations. Figure I.6a also reveals the timeline of milestones in fuel cell design. The leftmost curve is the performance curve of the first practical H2/O2 fuel cell, built by Mond and Langer in 1889 (Mond and Langer, 1889). The electrodes consisted of thin porous leafs of Pt covered with Pt black particles with sizes of 0.1 lam. The electrol)de was a porous ceramic material, earthenware, that was soaked in sulfuric acid. The Pt loading was 2 mg cm and the current density achieved was about 0.02 A cm at a fuel cell voltage of 0.6 V. The next curve in Figure I.6a marks the birth of the PEFC, conceived by Grubb and Niedrach (Grubb and Niedrach, 1960). In this cell, a sulfonated cross-linked polystyrene membrane served as gas separator and proton conductor. However, the proton conductivity of the polystyrene PEM was too low and the membrane lifetime was too short for a wider use of this cell. It needed the invention of a new class of polymer electrolytes in the form of Nafion PFSA-type PEMs to overcome these limitations.

See other pages where Birthing classes types is mentioned: [Pg.194]    [Pg.812]    [Pg.155]    [Pg.416]    [Pg.130]    [Pg.123]    [Pg.482]    [Pg.221]    [Pg.116]    [Pg.191]    [Pg.251]    [Pg.636]    [Pg.251]    [Pg.42]    [Pg.13]    [Pg.312]    [Pg.192]   
See also in sourсe #XX -- [ Pg.64 , Pg.162 ]




SEARCH



Birth

Birthing

Birthing classes

© 2024 chempedia.info