Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bipyridyl, formation

Methanol can be converted to a dye after oxidation to formaldehyde and subsequent reaction with chromatropic acid [148-25-4]. The dye formed can be deterruined photometrically. However, gc methods are more convenient. Ammonium formate [540-69-2] is converted thermally to formic acid and ammonia. The latter is trapped by formaldehyde, which makes it possible to titrate the residual acid by conventional methods. The water content can be determined by standard Kad Eischer titration. In order to determine iron, it has to be reduced to the iron(II) form and converted to its bipyridyl complex. This compound is red and can be determined photometrically. Contamination with iron and impurities with polymeric hydrocyanic acid are mainly responsible for the color number of the merchandized formamide (<20 APHA). Hydrocyanic acid is detected by converting it to a blue dye that is analyzed and deterruined photometrically. [Pg.509]

The majority of the work on xanthates of divalent nickel has, in recent years, been centered on the formation of base adducts with [Ni(Rxant)2]. Carlin and Siegel (348) and Daktenieks and Graddon (349) reported the formation of paramagnetic [Ni(Etxant)2B2] or [Ni(Etaxant)2B], where B = pyridine, 4-methylpyridine, bipyridyl, or... [Pg.256]

Examination by stopped-flow method of the autoxidation of the bipyridyl complex of Cu(I), Cu(bipy)2, shows that it is first-order both in O2 and in the complex, with k2 (25 °C) = (6.5 0.5)x 10 l.moIe . sec. No was incorporated from labelled water into the product H2O2, indicating the 0-0 bond remains intact during reduction. The authors favour a /wo-equivalent reduction on thermodyamic grounds, proposing a rate-determining formation of a Cu(I)-02 complex which reacts rapidly with a second Cu(I) species, viz. [Pg.449]

Organic synthesis 7 [OS 7] Formation of quaternary salts from 4,4 -bipyridyl and ethyl... [Pg.424]

Cul, 12mol% of 2,2 -dipyridyl, in lOvol of xylene diglyme (9 1) at 140°C with azeotropic removal of the water as it was formed. The azeotropic removal of water helped alleviate the problem of solids coating the reaction vessel walls, which led to stalling of the reaction. The reaction was complete in less than lOh, typically with 96% assay yield and 92% isolated yield for 49 after aqueous work-up and subsequent crystallization [14b-d]. It was noteworthy that this catalytic system composed of the copper(I) salt with bipyridyl ligand was recently reported to be applicable to a wide range of Ullmann-type ether formations [14d]. [Pg.156]

Pyridyl-containing ligands have already been discussed but the large body of work involving bipyridyl type ligands is represented here. Bipyridine and polybipyridine ligands in particular have found application with zinc in the formation of supramolecular structures and examples will be mentioned in Section 6.8.4.9. [Pg.1161]

There are two levels of self-assembly in the formation of tetra-, penta-and hexa-nuclear products from the poly-bipyridyls (L) 20 and 21 and iron(II) salts FeCl2, FeBr2 or FeS04 - the products are anion-dependent. The coordination of three bpy units, from different ligand molecules, to the Fe2+ centers produces a helical structure interaction of these helical strands with anions results in further molecular organization to form the final toroidal product. The discussion draws parallels between the helical and toroidal structures here and secondary and tertiary structure in biological systems (482). Thermodynamic and kinetic intermediates have been characterized in the self-assembly of a di-iron triple stranded helicate with bis(2,2/-bipyridyl) ligands (483). [Pg.138]

Systems which fulfil these conditions are tris(2,2 -bipyridyl)rhodium complexes [63] and, more effectively, substituted or unsubstituted (2,2 -bipyridyl) (pentamethylcyclopentadienyl)-rhodium complexes [64], Electrochemical reduction of these complexes at potentials between — 680 mV and — 840 mV vs SCE leads to the formation of rhodium hydride complexes. Strong catalytic effects observed in cyclic voltammetry and preparative electrolyses are... [Pg.109]

Kinetic parameters k, often also and AS, occasionally AV ) for formation and dissociation of several pentacyanoferrate(II) complexes [Fe(CN)5L]" have been established. Ligands L include several S- and A-donor heterocycles,4-methyl- and 4-amino-pyridines, a series of alkylamines, 3- and 4-hydroxy- and 3- and 4-methoxy-pyridines, several amino acids, nicotinamide, " 4-pyridine aldoxime, 3-Me and 3-Ph sydnones, several bis-pyridine ligands,neutral, protonated, and methylated 4,4 -bipyridyl, 1,2-bis(4-pyridyl)ethane and traTO-l,2-bis0-pyridyl)ethene, pyrazine- 4,4 -bipyridyl- and bis(4-pyridyl)ethyne-pentaammine-cobalt(III), edta-ruthenium(III), and pentaammineruthenium-(II)and-(III) complexes of... [Pg.425]

Bipyridyl (continued) as ligand, 12 135-1% catalysis, 12 157-159 electron-transfer reactions, 12 153-157 formation, dissociation, and racemization of complexes, 12 149-152 kinetic studies, 12 149-159 metal complexes with, in normal oxidation states, 12 175-189 nonmetal complexes with, 12 173-175 oxidation-reduction potentials, 12 144-147... [Pg.24]

V,Af-Dimethylaniline A A,A, AT-Tetramethyl-p-phenylenediamine Cyclic amines 4,4 -Bipyridyl Quinoline Pyridine A-oxide Pyridinium chloride Hydroxides CsOH LiOH NaOH Triton B6 Alkylamines Ammonia Methylamine Ethylamine Propylamine Butylamine Decylamine Dodecylamine Tridecylamine Tetradecylamine Pentadecylamine Hexadecylamine Heptadecylamine Octadecylamine Tributylamine Miscellaneous Ammonium acetate Hydrazine Potassium formate Guanidine... [Pg.43]


See other pages where Bipyridyl, formation is mentioned: [Pg.528]    [Pg.134]    [Pg.124]    [Pg.311]    [Pg.164]    [Pg.559]    [Pg.1162]    [Pg.1187]    [Pg.1218]    [Pg.156]    [Pg.173]    [Pg.254]    [Pg.1403]    [Pg.250]    [Pg.973]    [Pg.1015]    [Pg.620]    [Pg.169]    [Pg.275]    [Pg.658]    [Pg.951]    [Pg.134]    [Pg.126]    [Pg.181]    [Pg.190]    [Pg.180]    [Pg.517]    [Pg.456]    [Pg.612]    [Pg.630]    [Pg.250]    [Pg.14]    [Pg.32]    [Pg.46]    [Pg.513]    [Pg.623]    [Pg.224]   
See also in sourсe #XX -- [ Pg.252 ]




SEARCH



Bipyridyl

© 2024 chempedia.info