Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biological activity reduction

In spite of the rationale on which the testing of dyestuffs as antibiotics rested subsequent research re vealed that the antibacterial properties of Prontosil had nothing at all to do with its being a dye In the body Prontosil undergoes a reductive cleavage of its azo linkage to form sulfanilamide which is the sub stance actually responsible for the observed biological activity This is why Prontosil is active in vivo but not in vitro... [Pg.951]

The main reaction of this type has been the reductive cyclization of nitropyridine derivatives carrying an o-amino ester or o-aminocarbonyl substituent. These cyclize in situ via the o-diamino derivative to give pyridopyrazines of known constitution, either for establishment of structure of products obtained in the ambiguous Isay synthesis (see Section 2.15.15.6.1), or in the synthesis of aza analogues of biologically active molecules. [Pg.254]

Benzofurazan, 7-chloro-4-nitro-, 6, 394 as fluorigenic agents, 6, 410, 426 Benzofurazan, 4-chloro-7-sulfo-ammonium salt properties, 6, 426 Benzofurazan, 4-nitro-synthesis, 6, 408 Benzofurazans, 6, 393-426 Beckmann fragmentation, 6, 412 biological activity, 6, 425 bond angles, 6, 396 bond lengths, 6, 396 diazo coupling, 6, 409 dipole moments, 6, 400 electrochemical reduction, 5, 73 electrophilic reactions, 6, 409-410 ESR spectroscopy, 6, 400... [Pg.549]

Benzo[6]thiophene, 4-N-methylcarbamoyl-biological activity, 4, 913 Benzo[6]thiophene, 2-methyl-3-vinyl-cycloaddition reactions, 4, 795 Benzo[fc]thiophene, 2-( 1 -naphthyl)-synthesis, 4, 915 Benzo[6]thiophene, 2-nitro-reduction, 4, 815 synthesis, 4, 923 Benzo[6]thiophene, 3-nitro-cycloaddition reactions, 4, 789 Benzo[6]thiophene, 4-nitro-synthesis, 4, 923 Benzo[6]thiophene, 5-nitro-synthesis, 4, 923... [Pg.560]

Isothiazole-4,5-dicarboxylic acid, 3-phenyl-dimethyl ester synthesis, S, 150 Isothiazole-5-glyoxylic acid ethyl ester reduction, 6, 156 Isothiazole-4-mercurioacetate reactions, 6, 164 Isothiazole-5-mercurioacetate reactions, 6, 164 Isothiazoles, 6, I3I-I75 acidity, 6, 141 alkylation, 6, 148 aromaticity, S, 32 6, 144-145 basicity, 6, I4I biological activity, 6, 175 boiling points, 6, I43-I44, 144 bond fixation, 6, 145 bond orders, 6, I32-I34 calculated, 6, 133 bromination, S, 58 6, 147 charge densities, 6, 132-134 cycloaddition reactions, 6, 152 desulfurization, S, 75 6, 152 deuteration, S, 70... [Pg.683]

Pyrido[3,4-d]pyrimidine-2,4-dione synthesis, 3, 215 Pyridopyrimidines, 3, 201 iV-alkylations, 3, 206 biological activity, 3, 260-261 1-electron reductions, 3, 207 IR spectra, 3, 204 mass spectra, 3, 204 MO calculations, 3, 204 NMR, 3, 202, 203 nucleophilic substitution, 3, 213 8-nucleosides synthesis, 3, 206 physical properties, 3, 201-205 protonation, 3, 206 radical reactions, 3, 215 reactions with water, 3, 207 reduced... [Pg.800]

Finally, in 1797, the Frenchman L. N. Vauquelin discovered the oxide of a new element in a Siberian mineral, now known as crocoite (PbCr04), and in the following year isolated the metal itself by charcoal reduction. This was subsequently named chromium (Greek xpco ia, chroma, colour) because of the variety of colours found in its compounds. Since their discoveries the metals and their compounds have become vitally important in many industries and, as one of the biologically active transition elements, molybdenum has been the subject of a great deal of attention in recent years, especially in the field of nitrogen fixation (p. 1035). [Pg.1002]

Esters of diphenylacetic acids with derivatives of ethanol-amine show mainly the antispasmodic component of the atropine complex of biologic activities. As such they find use in treatment of the resolution of various spastic conditions such as, for example, gastrointestinal spasms. The prototype in this series, adiphenine (47), is obtained by treatment of diphenyl acetyl chloride with diethylaminoethanol. A somewhat more complex basic side chain is accessible by an interesting rearrangement. Reductive amination of furfural (42) results in reduction of the heterocyclic ring as well and formation of the aminomethyltetrahydro-furan (43). Treatment of this ether with hydrogen bromide in acetic acid leads to the hydroxypiperidine (45), possibly by the intermediacy of a carbonium ion such as 44. Acylation of the alcohol with diphenylacetyl chloride gives piperidolate (46). ... [Pg.91]

A heterocyclic ring may be used in place of one of the benzene rings without loss of biologic activity. The first step in the synthesis of such an agent starts by Friedel-Crafts-like acylation rather than displacement. Thus, reaction of sulfenyl chloride, 222, with 2-aminothiazole (223) in the presence of acetic anhydride affords the sulfide, 224. The amine is then protected as the amide (225). Oxidation with hydrogen peroxide leads to the corresponding sulfone (226) hydrolysis followed by reduction of the nitro group then affords thiazosulfone (227). ... [Pg.141]

The weathering process which eventually reduces the rock of the parent material to the inorganic constituents of soil comprises both physical and chemical changes. Size reduction from rocks to the colloidal state depends not only upon the mechanical action of natural forces but also on chemical solubilisation of certain minerals, action of plant roots, and the effects of organic substances formed by biological activity. [Pg.377]


See other pages where Biological activity reduction is mentioned: [Pg.207]    [Pg.28]    [Pg.207]    [Pg.28]    [Pg.182]    [Pg.209]    [Pg.221]    [Pg.224]    [Pg.82]    [Pg.247]    [Pg.499]    [Pg.480]    [Pg.35]    [Pg.179]    [Pg.287]    [Pg.561]    [Pg.627]    [Pg.638]    [Pg.641]    [Pg.663]    [Pg.798]    [Pg.799]    [Pg.800]    [Pg.911]    [Pg.2225]    [Pg.213]    [Pg.119]    [Pg.149]    [Pg.10]    [Pg.424]    [Pg.103]    [Pg.37]    [Pg.75]    [Pg.76]    [Pg.199]    [Pg.112]    [Pg.215]    [Pg.364]    [Pg.187]   
See also in sourсe #XX -- [ Pg.264 , Pg.283 , Pg.299 ]




SEARCH



Activity reduction

Biological reductants

Reduction activated

Reduction activation

Reduction, biological

Reductive activation

© 2024 chempedia.info