Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biocatalytic with dioxygenases

The biocatalytic formation of hydroperoxides seems to be mainly associated with dioxygenase activity found in plants, such as peas, peanuts, cucumbers, and potatoes as well as marine green algae. Thus, it is not surprising that the (noimatural) compounds transformed so far have a strong structural resemblance to the natural substrates - fatty acids. [Pg.198]

Advantageous use of homochiral cyclohexadiene-cis-l,2-diol, available by means of biocatalytic oxidation of chlorobenzene with toluene dioxygenase, has enabled the synthesis of all four enantiomerically pure C18-sphingosines (Nugent, 1998), which are known inhibitors of protein kinase C and important in cellular response mediation for tumor promoters and growth factors. The four requisite diastere-omers of azido alcohol precursors were accessed by regioselective opening of epoxides with either azide or halide ions. [Pg.165]

The c/s-dihydroxylation reaction catalyzed by these dioxygenases is typically highly enantioselective (often >98% ee) and, as a result, has proven particularly useful as a source of chiral synthetic intermediates (2,4). Chiral cis-dihydrodiols have been made available commercially and a practical laboratory procedure for the oxidation of chlorobenzene to IS, 2S)-3-chlorocyclohexa-3,5-diene-l,2-c diol by a mutant strain of Pseudomonas putida has been published (6). Transformation with whole cells can be achieved either by mutant strains that lack the second enzyme in the aromatic catabolic pathway, cw-dihydrodiol dehydrogenase (E.C. 1.3.1.19), or by recombinant strains expressing the cloned dioxygenase. This biocatalytic process is scalable, and has been used to synthesize polymer precursors such as 3-hydroxyphenylacetylene, an intermediate in the production of acetylene-terminated resins (7). A synthesis of polyphenylene was developed by ICI whereby ftie product of enzymatic benzene dioxygenation, c/s-cyclohexa-3,5-diene-1,2-diol, was acetylated and polymerized as shown in Scheme 2 (8). [Pg.435]

Figure 5. The biocatalytic pathway (boxed arrows) created for microbial conversion of D-glucose into cis, cw-muconate from the perspective of the biochemical pathways from which the enzymes were recruited. Conversion of D-glucose into DHS requires transketolase (tkt) from the pentose phosphate pathway and DAHP synthase (aroF, aroG, aroH)y DHQ synthase aroB and DHQ dehydratase aroD) from the common pathway of aromatic amino acid biosynthesis. Conversion of DHS into catechol requires DHS dehydratase (aroZ, enzyme A) from hydroaromatic catabolism, protocatechuate decarboxylase aroY, enzyme B), and catechol 1,2-dioxygenase (caM, enzyme C) from the benzoate branch of the p-ketoadipate pathway. (Adapted and reproduced with permission from ref. 21.)... Figure 5. The biocatalytic pathway (boxed arrows) created for microbial conversion of D-glucose into cis, cw-muconate from the perspective of the biochemical pathways from which the enzymes were recruited. Conversion of D-glucose into DHS requires transketolase (tkt) from the pentose phosphate pathway and DAHP synthase (aroF, aroG, aroH)y DHQ synthase aroB and DHQ dehydratase aroD) from the common pathway of aromatic amino acid biosynthesis. Conversion of DHS into catechol requires DHS dehydratase (aroZ, enzyme A) from hydroaromatic catabolism, protocatechuate decarboxylase aroY, enzyme B), and catechol 1,2-dioxygenase (caM, enzyme C) from the benzoate branch of the p-ketoadipate pathway. (Adapted and reproduced with permission from ref. 21.)...

See other pages where Biocatalytic with dioxygenases is mentioned: [Pg.325]    [Pg.327]    [Pg.238]    [Pg.326]    [Pg.344]    [Pg.315]    [Pg.325]    [Pg.436]    [Pg.916]    [Pg.267]    [Pg.459]    [Pg.464]    [Pg.1106]   
See also in sourсe #XX -- [ Pg.325 ]




SEARCH



Biocatalytic

Dioxygenases

© 2024 chempedia.info