Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biocatalysis lipase-catalyzed hydrolysis

Properties such as large interfacial area and an ability to solubilize both oil-soluble and water-soluble reactants in a single phase system makes microemulsions ideal as reaction media (Flanagan and Singh, 2006 Gaonkar and Bagwe, 2002). For example, Morgado and co-workers (1996) nsed a continnons reversed micellar system to synthesize lysophospholipids and free fatty acids from lecithin hydrolysis, with applications to the food, pharmaceutical and chemical industries. Hydrolysis was catalyzed by porcine pancreatic phospholipase A. Carvalho and Cabral (2000) reviewed the use of reversed micellar systems as reactors to carry out lipase-catalyzed esterification, biocatalysis, transesterificadon, and hydrolysis reactions. [Pg.160]

An interesting example of biocatalysis and chemical catalysis is the synthesis of a derivative of y-aminobutyric acid (GABA) that is an inhibitor for the treatment of neuropathic pain and epilepsy (Scheme 10.4). The key intermediate is a racemic mixture of cis- and trons-diastereoisomer esters obtained by a hydrogenation following a Horner-Emmons reaction. The enzymatic hydrolysis of both diaste-reoisomers, catalyzed by Candida antarctica lipase type B (CALB), yields the corresponding acid intermediate of the GABA derivative. It is of note that both cis- and trans-diastereoisomers of the desired enantiomer of the acid intermediate can be converted into the final product in the downstream chemistry [10]. [Pg.215]

Although many biochemical reactions take place in the bulk aqueous phase, there are several, catalyzed by hydroxynitrile lyases, where only the enzyme molecules close to the interface are involved in the reaction, unlike those enzyme molecules that remain idly suspended in the bulk aqueous phase [6, 50, 51]. This mechanism has no relation to the interfacial activation mechanism typical of lipases and phospholipases. Promoting biocatalysis in the interface may prove fruitful, particularly if substrates are dissolved in both aqueous phases, provided that interfacial stress is minimized. This approach was put into practice recently for the enzymatic epoxidation of styrene [52]. By binding the enzyme to the interface through conjugation of chloroperoxidase with polystyrene, a platform that protected the enzyme from interfacial stress and minimized product hydrolysis was obtained. It also allowed a significant increase in productivity, as compared to the use of free enzyme, and simultaneously allowed continuous feeding, which further enhanced productivity. [Pg.204]

This is the most common application of biocatalysis in organic synthesis and represents the majority of published examples. Enzymes that catalyze acyl transfer reactions of esters and amides are widely distributed in nature and belong to the lipase/esterase and protease/amidase families, respectively. They play key roles in the metabolism of lipids and proteins and the choice of names, lipase versus esterase, is subject to debate. Normally, acyl ttansfer occurs almost exclusively to water, resulting in hydrolysis. This is particularly valuable for amide hydrolysis that normally requires forcing conditions and strong acid or... [Pg.12]


See other pages where Biocatalysis lipase-catalyzed hydrolysis is mentioned: [Pg.219]    [Pg.132]    [Pg.431]    [Pg.132]    [Pg.179]    [Pg.70]    [Pg.34]    [Pg.293]    [Pg.415]   


SEARCH



Biocatalysis

Lipase biocatalysis

Lipase hydrolysis

Lipase-catalyzed

Lipase-catalyzed hydrolysis

© 2024 chempedia.info