Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bimodal mesoporous silica spheres

Encapsulation via the layer-by-layer assembly of multilayered polyelectrolyte (PE) or PE/nanoparticle nanocomposite thin shells of catalase in bimodal mesoporous silica spheres is also described by Wang and Caruso [198]. The use of a bimodal mesoporous structure allows faster immobilization rates and greater enzyme immobilization capacity (20-40 wt%) in comparison with a monomodal structure. The activity of the encapsulated catalase was retained (70 % after 25 successive batch reactions) and its stability enhanced. [Pg.467]

Mesoporous carbon was obtained by sucrose carbonization in the pores of MCM-4 silica spheres with subsequently dissolution of the silica. The carbon was impregnated with the ZSM-5 synthesis gel and the crystallization was carried out under hydrothermal conditions. After burning off the carbon, ZSM-5 with a bimodal mesopore system showing mean diameters around 2 and 30 nm was obtained. Nevertheless, the hexagonal pore array of the MCM-41 was not reproduced in the ZSM-5. [Pg.409]

The difficulty in direct synthesis of mesoporous transition metal oxides by soft templating (surfactant micelles) arises from their air- and moisture-sensitive sol-gel chemistry [4,10,11]. On the other hand, mesoporous silica materials can be synthesized in nimierous different solvent systems (i.e., water or water-alcohol mixtures), various synthetic conditions (Le., acidic or basic, various concentration and temperature ranges), and in the presence of organic (Le., TMB) and inorganic additives (e.g., CT, SO, and NOs ) [12-15]. The flexibility in synthesis conditions allows one to synthesize mesoporous silica materials with tunable pore sizes (2-50 nm), mesostructures (Le., 2D Hexagonal, FCC, and BCC), bimodal porosity, and morphologies (Le., spheres, rods, ropes, and cubes) [12,14,16-19]. Such a control on the physicochemical parameters of mesoporous TM oxides is desired for enhanced catalytic, electronic, magnetic, and optical properties. Therefore, use... [Pg.701]


See other pages where Bimodal mesoporous silica spheres is mentioned: [Pg.286]    [Pg.286]    [Pg.214]    [Pg.79]    [Pg.91]    [Pg.122]    [Pg.339]    [Pg.169]    [Pg.257]    [Pg.42]    [Pg.605]    [Pg.104]    [Pg.86]    [Pg.118]    [Pg.605]   
See also in sourсe #XX -- [ Pg.286 ]




SEARCH



Bimodal bimodality

Bimodality

Mesoporous silica spheres

Silica spheres

Silica, mesoporous

© 2024 chempedia.info