Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bimetallic catalyst surfaces

Shubina and Koper also claimed that for the electrochemical oxidation of CO on bimetallic catalyst surfaces, the bifunctional effect is the most dominant mechanism. The more oxophylic element Ru or Sn seems to provide the oxygen donor, which is commonly believed to be adsorbed hydroxyl group, via activation of adsorbed water at a smaller electrode overpotential,... [Pg.355]

To proceed with the topic of this section. Refs. 250 and 251 provide oversights of the application of contemporary surface science and bonding theory to catalytic situations. The development of bimetallic catalysts is discussed in Ref. 252. Finally, Weisz [253] discusses windows on reality the acceptable range of rates for a given type of catalyzed reaction is relatively narrow. The reaction becomes impractical if it is too slow, and if it is too fast, mass and heat transport problems become limiting. [Pg.729]

When the ruthenium EXAFS for the ruthenium-copper catalyst is compared with the EXAFS for a ruthenium reference catalyst containing no copper, it is found that they are not very different. This indicates that the environment about a ruthenium atom in the bimetallic catalyst is on the average not very different from that in the reference catalyst. This result is consistent with the view that a ruthenium-copper cluster consists of a central core of ruthenium atoms with the copper atoms present at the surface. [Pg.255]

The results of the EXAFS studies on supported bimetallic catalysts have provided excellent confirmation of earlier conclusions (21-24) regarding the existence of bimetallic clusters in these catalysts. Moreover, major structural features of bimetallic clusters deduced from chemisorption and catalytic data (21-24), or anticipated from considerations of the miscibility or surface energies of the components (13-15), received additional support from the EXAFS data. From another point of view, it can also be said that the bimetallic catalyst systems provided a critical test of the EXAFS method for investigations of catalyst structure (17). The application of EXAFS in conjunction with studies employing ( mical probes and other types of physical probes was an important feature of the work (25). [Pg.265]

Surface Chemistry and Catalysis on Some Platinum-Bimetallic Catalysts... [Pg.267]

As was the case for the silica-supported Ru-Rh bimetallic catalysts, there was no significant surface enrichment in either metal over the entire range of bimetallic catalyst compositions. [Pg.297]

The surface-catalyst composition data for the silica-supported Ru-Rh cuid Ru-Ir catalyst are shown in Figure 1. A similcir plot for the series of silica-supported Pt-Ru bimetallic catalysts taken from ref. P) is included for comparison purposes. Enthalpies of sublimation for Pt, Ru, Rh and Ir are 552, 627, 543, and 648 KJ/mole. Differences in enthalpies of sublimation (a<75 KJ/mole) between Pt and Ru cind between Rh and Ru are virtually identical, with Pt euid Rh having the lower enthalpies of sublimation. For this reason surface enrichment in Pt for the case of the Pt-Ru/Si02 bimetallic clusters cannot be attributed solely to the lower heat of sublimation of Pt. Other possibilities must also be considered. [Pg.298]

Formation of single-walled carbon nanotubes (SWNTs) was found to be catalyzed by metal nanoparticles [207]. Wang et al. [114] investigated bimetallic catalysts such as FeRu and FePt in the size range of 0.5-3 nm for the efficient growth of SWNTs on flat surfaces. When compared with single-component catalysts such as Fe, Ru, and Pt of similar size, bimetallic catalysts Fe/Ru and Fe/Pt produced at least 200% more SWNTs [114]. [Pg.68]

Waszczuk et al., 2001b Tong et al., 2002]. Because Ru is deposited as nanosized Ru islands of monoatomic height, the Ru coverage of Pt could be determined accurately. In that case, the best activity with regard to methanol oxidation was found for a Ru coverage close to 40-50% at 0.3 and 0.5 V vs. RHE. However, the structure of such catalysts and the conditions of smdy are far from those used in DMFCs. Moreover, the surface composition of a bimetallic catalyst likely depends on the method of preparation of the catalyst [Caillard et al., 2006] and on the potential [Blasini et al., 2006]. [Pg.350]

Finally, we want to compare the main mechanistic findings of our study with the classic bifunctional mechanism, which is generally used to explain the improved CO oxidation reactivity of PtRu surfaces and catalyst particles [Watanabe and Motoo, 1975]. According to that mechanism, Ru acts as a promotor for the formation of oxygenated adspecies on bimetallic PtRu surfaces, which can then react with CO... [Pg.495]

Methylcyclopentane is a powerful probe molecule for the study of metal surfaces. The product distribution on platinum depends on the following factors particle size 491 reaction conditions 492-494 carbonaceous residues,492,493,495 and the extent of the interface between the metal and the support.492,493,495 The hydrogenolysis rate of methylcyclopentane depends on the hydrogen pressure.496,497 The rate exhibits a maximal value as a function of hydrogen pressure on EuroPt catalysts.498 The hydrogenolysis of methylcyclopentane has also been studied over Pt-Ru bimetallic catalysts.499... [Pg.191]

A bimetallic catalyst can be obtained by the reaction of tetrabutyltin with Rh/Si02 catalyst. The partial hydrogenolysis leads to the Rhs[Sn(n-C4H9)2]/ Si02 surface organometallic complexes, which proved to be fully selective in the hydrogenation of unsaturated aldehydes into the corresponding unsaturated alcohols.318... [Pg.276]

Johnson et al.67 studied CO hydrogenation on bimetallic catalysts consisting of cobalt overlayers on W (100) and (110) single crystals at 200°C, 1 bar at a H2/ CO ratio of 2. AES spectra showed the postreaction Co/W surfaces to have high coverages of both carbon and oxygen, with carbon line shapes characteristic of bulk carbidic carbon.67 The catalytic activity apparently could not be correlated with surface carbon level.67... [Pg.61]

The first deals with small islands of silver on a ruthenium substrate. One may look at this sample as a, perhaps somewhat far-fetched, model of a supported catalyst or a bimetallic surface. As metal layers are almost never in perfect registry with the substrate, they possess a certain amount of strain. Goodman and coworkers [46] used these strained metal overlayers as model systems for bimetallic catalysts. Here we look first at the electronic properties of the Ag/Ru(001) system as studied by UPS. [Pg.77]

Comparison of the Cu K-edge EXAFS signals for the monometallic Cu/Si02 and the bimetallic Ru-Cu/Si02 catalyst, on the other hand, provides clear evidence for the proximity of ruthenium to copper atoms in the latter. This is seen in the different shape of the measured EXAFS signal and the distorted inverse transform of the first coordination shell. Note that the intensity of the latter is weaker for the bimetallic catalyst, while the region between k=8 and k=15 A-1 has become more important, which points to the presence of a scattering atom heavier than copper in the first coordination shell. The reduced intensity in the Cu Fourier transform of the bimetallic catalyst is indicative of a lower coordination of the copper, which is characteristic of surface atoms. [Pg.173]

Del Angel, P. et al., Aggregation state of Pt-Au/C bimetallic catalysts prepared by surface redox reactions, Langmuir, 16, 7210, 2000. [Pg.89]

Colloidal nanoparticles can be employed as heterogeneous catalyst precursors in the same fashion as molecular clusters. In many respects, colloidal nanoparticles offer opportunities to combine the best features of the traditional and cluster catalyst preparation routes to prepare uniform bimetallic catalysts with controlled particle properties. In general, colloidal metal ratios are reasonably variable and controllable. Further, the application of solution and surface characterization techniques may ultimately help correlate solution synthetic schemes to catalytic activity. [Pg.93]


See other pages where Bimetallic catalyst surfaces is mentioned: [Pg.182]    [Pg.201]    [Pg.235]    [Pg.308]    [Pg.195]    [Pg.296]    [Pg.303]    [Pg.346]    [Pg.355]    [Pg.412]    [Pg.498]    [Pg.707]    [Pg.96]    [Pg.423]    [Pg.274]    [Pg.275]    [Pg.174]    [Pg.53]    [Pg.254]    [Pg.256]    [Pg.353]    [Pg.78]    [Pg.239]    [Pg.92]   
See also in sourсe #XX -- [ Pg.240 ]




SEARCH



Bimetallic catalysts

Bimetallic catalysts single-crystal surfaces

Bimetallic catalysts surface metal modifiers

Bimetallic surfaces

Platinum-bimetallic catalysts, surface

Surface catalysts

© 2024 chempedia.info