Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene derivatives from naphthalene

While the condensation of amines with nitroso compounds appears to have wide applicability in the benzene series, it seems to lead to complex dye molecules in the naphthalene series. A method has been developed using a somewhat complex reaction between thionylamines and substituted hydroxylamines which does produce azo compounds derived from naphthalenes. This synthesis is of particular interest because it helped to settle the question whether true naphthylazo compounds with hydroxyl groups could exist [36]. [Pg.159]

This process competes favorably with benzylic hydrogen abstraction in toluene, less in ethylbenzene, and least in cumene (31). Such reactions do not seem significant in the oxidation of benzene derivatives. However, naphthalene reacts about 20 times as rapidly with phenyl radical as does benzene (16), and radical addition to the naphthalene nucleus may at least partly account for the slow oxidation rate in the methylnapthalenes. Among the minor products from both methylnaphthalene oxidations were compounds of molecular weight 296 ... [Pg.409]

Finally, two other types of n coordination to sodium documented by crystal structure data will be mentioned. rc-Type bonding interactions between bis(THF)sodium units and the benzene rings of complex aluminate anions derived from naphthalene or anthracene have been found in the compounds [Na(THF)2]2[Me2AlC10H8]2 and [Na(THF)2]2[Me2AlC14H10]2 (46). Even more complex coordination patterns between sodium, transition metals, and n systems have been reported by Jonas and Kruger (5). [Pg.225]

The same principles of resonance, steric considerations, and directing power of substituents apply to larger polycyclic systems, derived from naphthalene by additional benzofusion, such as anthracene and phenanthrene (Section 15-5). For example, the site of preferred electrophilic attack on phenanthrene is C9 (or CIO) because the dominant resonance contributor to the resulting cation retains two intact, delocalized benzene rings, whereas all the other forms require disruption of the aromaticity of either one or two of those rings. [Pg.721]

Large-scale recovery of light oil was commercialized in England, Germany, and the United States toward the end of the nineteenth century (151). Industrial coal-tar production dates from the earliest operation of coal-gas faciUties. The principal bulk commodities derived from coal tar are wood-preserving oils, road tars, industrial pitches, and coke. Naphthalene is obtained from tar oils by crystallization, tar acids are derived by extraction of tar oils with caustic, and tar bases by extraction with sulfuric acid. Coal tars generally contain less than 1% benzene and toluene, and may contain up to 1% xylene. The total U.S. production of BTX from coke-oven operations is insignificant compared to petroleum product consumptions. [Pg.96]

Anthraquinone dyes are derived from several key compounds called dye intermediates, and the methods for preparing these key intermediates can be divided into two types (/) introduction of substituent(s) onto the anthraquinone nucleus, and (2) synthesis of an anthraquinone nucleus having the desired substituents, starting from benzene or naphthalene derivatives (nucleus synthesis). The principal reactions ate nitration and sulfonation, which are very important ia preparing a-substituted anthraquiaones by electrophilic substitution. Nucleus synthesis is important for the production of P-substituted anthraquiaones such as 2-methylanthraquiQone and 2-chloroanthraquiaone. Friedel-Crafts acylation usiag aluminum chloride is appHed for this purpose. Synthesis of quinizatia (1,4-dihydroxyanthraquiQone) is also important. [Pg.309]

An important reaction in the chemistry of naphthalenes is the Bucherer reaction,i.e. the conversion of naphthols 1 to naphthylamines 2 as well as the reverse reaction. The reaction is carried out in aqueous medium in the presence of catalytic amounts of a sulfite or bisulfite. Apart from very few exceptions it does not apply to benzene derivatives, which limits the scope of that reaction. [Pg.47]

Benzene- 1,2-diacetonitriles e.g. 19, in the presence of hydrogen bromide in acetic acid, or in diethyl ether, cyclize to 4-bromo-l //-3-benzazepin-2-amines, e.g. 20a.41,42 l//-Naphtho[2,3-t/]azepines, e.g. 22a, are prepared in a similar manner from naphthalene-2,3-diacetonitriles, e.g. 21.41 Replacement of hydrogen bromide by hydrogen iodide yields the corresponding 4-iodo derivatives, e.g. 20b and 22b. [Pg.214]

Diarylmethylenecyclopropa[6]naphthalenes 14, unlike their benzene parent counterparts which give cycloaddition reactions at the cyclopropene bridge bond [10a], react on the exo double bond in Diels-Alder cycloadditions (see Sect. 2.1.1) [10b]. The reactions of 14 with the highly electron-deficient acetylenic(phenyl)iodonium triflate 584 give products 586a and 587, which are believed to derive from unstable primary [2 + 2] cycloadducts 585 (Scheme 82) [10b],... [Pg.91]

Among oxo-metals, osmium tetroxide is a particularly intriguing oxidant since it is known to oxidize various types of alkenes rapidly, but it nonetheless eschews the electron-rich aromatic hydrocarbons like benzene and naphthalene (Criegee et al., 1942 Schroder, 1980). Such selectivities do not obviously derive from differences in the donor properties of the hydrocarbons since the oxidation (ionization) potentials of arenes are actually less than those of alkenes. The similarity in the electronic interactions of arenes and alkenes towards osmium tetroxide relates to the series of electron donor-acceptor (EDA) complexes formed with both types of hydrocarbons (26). Common to both arenes and alkenes is the immediate appearance of similar colours that are diagnostic of charge-transfer absorp-... [Pg.219]

Fig. 27. Semilogarithmic plot of the nonradiative triplet rate constant against (E— o)/> for the normal and deuterated hydrocarbons listed in Ref. t)). The broken line, derived from phosphorescence spectra, is taken from Ref. t). The slopes of the two solid lines differ by a factor 1.35. (O.Ci-jjH, E = 4000 cm l 0 Ci fl Z>u, =5500 cm t). The following totally deuterated hydrocarbons are included benzene, triphenylene, acenaphtene, naphthalene, phenanthrene, chrysene, biphenyl, p-terphenyl, pyrene, 1,2-benzanthracene, anthracene (in the order of increasing /S). (From Siebrand and Williams, Ref. l)... Fig. 27. Semilogarithmic plot of the nonradiative triplet rate constant against (E— o)/> for the normal and deuterated hydrocarbons listed in Ref. t)). The broken line, derived from phosphorescence spectra, is taken from Ref. t). The slopes of the two solid lines differ by a factor 1.35. (O.Ci-jjH, E = 4000 cm l 0 Ci fl Z>u, =5500 cm t). The following totally deuterated hydrocarbons are included benzene, triphenylene, acenaphtene, naphthalene, phenanthrene, chrysene, biphenyl, p-terphenyl, pyrene, 1,2-benzanthracene, anthracene (in the order of increasing /S). (From Siebrand and Williams, Ref. l)...
Seventeen priority pollutant compounds can be classified as polynuclear aromatics (PNA). These compounds consist of two or more benzene rings that share a pair of carbon atoms. They are all derived from coal tar, with naphthalene being the largest constituent. Naphthalene derivatives such as alpha-naphthylamine and alpha-naphthol are used in some pesticide processes therefore, naphthalene is by far the most prevalent PNA priority pollutant in the industry. Acenaphthene, anthracene, fluorene, fluoranthene, and phenathrene are found as raw material impurities. Acenaphthene is found in one pesticide process as a raw material. The remaining ten PNAs are not suspected to be present in pesticide processes. [Pg.515]

Solid benzylic halogens are easily substituted with gaseous dialkylamines. Monoalkylamines are less suitable for uniform reactions due to secondary substitution of the initial product by the benzylic halide present. Some characteristic 100% yield conversions are listed in Scheme 31. The benzene (230) and naphthalene derivatives (231) started from the solid bromides, the anthracene derivatives (232) from the solid chlorides [22]. [Pg.136]

The analogous alkyl derivatives of toluene, xylene, and lower alkyl naphthalenes are included in the vast number of alkyl aromatics which are also described in the literature as sulfonation stocks (16). While several sulfonates derived from such products have enjoyed partial success, they have limitations with respect to yield, sudsing, and handling characteristics which place them at a disadvantage with respect to the alkyl benzenes described above. [Pg.331]

The ESR method has thus far been applied only to a few radical anions derived from aza analogues of benzene, naphthalene, and... [Pg.93]

Most of the substituent increments presented in Table 4.82 can be derived from 3C shifts of benzenoid carbons in monosubstituted benzenes as listed in Table 4.53. Additional substituent increments are available for fused aromatic rings such as naphthalene and... [Pg.319]


See other pages where Benzene derivatives from naphthalene is mentioned: [Pg.353]    [Pg.354]    [Pg.354]    [Pg.355]    [Pg.353]    [Pg.354]    [Pg.354]    [Pg.355]    [Pg.167]    [Pg.30]    [Pg.357]    [Pg.80]    [Pg.265]    [Pg.350]    [Pg.146]    [Pg.70]    [Pg.50]    [Pg.415]    [Pg.192]    [Pg.197]    [Pg.92]    [Pg.112]    [Pg.82]    [Pg.300]    [Pg.4]    [Pg.537]    [Pg.15]    [Pg.188]    [Pg.96]    [Pg.414]    [Pg.438]    [Pg.44]    [Pg.389]    [Pg.740]   


SEARCH



Benzene derivatives

From benzene

Naphthalene derivatives

Naphthalenes derivs

© 2024 chempedia.info