Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Behavior chain analysis

Aftercare. A treatment modality that comes after and is less intensive than outpatient or inpatient therapy. The focus is usually on relapse prevention. Behavior chain analysis. Assessing how one behavior leads to another, which leads to another, and so on. [Pg.176]

The most easily accessible experimental approach to this kind of modulation is offered by the study of solvent effects. This problem has recently been successfully faced by several authors [153,255,256]. In Fig. 28.33 it is possible to observe the modulation of the NLO responses obtained by changing the polarity of the solvent. It can be shown that a similar modulation is observed when the vibrational method is used to estimate molecular hyperpolarizabilities. Obviously, not every push-pull polyene exhibits solvent-dependent behavior. The analysis of the intensity behavior will reveal which systems are more suitable for modulation of bond alternation. Again it is the acceptor-donor pair that makes the molecule more responsive to the action of the solvent. In the polyene regime the chain structure is less affected by the interaction with the solvent. This can be rationalized if one remembers the two limiting canonical structures whose weighted combination reproduces the molecular structure. The interaction with the solvent is reflected in stabilization of the zwitterionic structure. [Pg.813]

The analysis of steady-state and transient reactor behavior requires the calculation of reaction rates of neutrons with various materials. If the number density of neutrons at a point is n and their characteristic speed is v, a flux effective area of a nucleus as a cross section O, and a target atom number density N, a macroscopic cross section E = Na can be defined, and the reaction rate per unit volume is R = 0S. This relation may be appHed to the processes of neutron scattering, absorption, and fission in balance equations lea ding to predictions of or to the determination of flux distribution. The consumption of nuclear fuels is governed by time-dependent differential equations analogous to those of Bateman for radioactive decay chains. The rate of change in number of atoms N owing to absorption is as follows ... [Pg.211]

This discussion refers to external plasticization only. Several theories, varyiag ia detail and complexity, have been proposed ia order to explain plasticizer action. Some theories iavolve detailed analysis of polarity, solubiHty, and iateraction parameters and the thermodynamics of polymer behavior, whereas others treat plasticization as a simple lubrication of chains of polymer from each other, analogous to the lubrication of metal parts by oil. Although each theory is not exhaustive, an understanding of the plasticization process can be gained by combining ideas from each theory, and an overall theory of plasticization must include all these aspects. [Pg.123]

In the next section we describe the basic models that have been used in simulations so far and summarize the Monte Carlo and molecular dynamics techniques that are used. Some principal results from the scaling analysis of EP are given in Sec. 3, and in Sec. 4 we focus on simulational results concerning various aspects of static properties the MWD of EP, the conformational properties of the chain molecules, and their behavior in constrained geometries. The fifth section concentrates on the specific properties of relaxation towards equilibrium in GM and LP as well as on the first numerical simulations of transport properties in such systems. The final section then concludes with summary and outlook on open problems. [Pg.511]

The effect of oxidative irradiation on mechanical properties on the foams of E-plastomers has been investigated. In this study, stress relaxation and dynamic rheological experiments are used to probe the effects of oxidative irradiation on the stmcture and final properties of these polymeric foams. Experiments conducted on irradiated E-plastomer (octene comonomer) foams of two different densities reveal significantly different behavior. Gamma irradiation of the lighter foam causes stmctural degradation due to chain scission reactions. This is manifested in faster stress-relaxation rates and lower values of elastic modulus and gel fraction in the irradiated samples. The incorporation of O2 into the polymer backbone, verified by IR analysis, conftrms the hypothesis of... [Pg.181]

Some information concerning the intramolecular relaxation of the hyperbranched polymers can be obtained from an analysis of the viscoelastic characteristics within the range between the segmental and the terminal relaxation times. In contrast to the behavior of melts with linear chains, in the case of hyperbranched polymers, the range between the distinguished local and terminal relaxations can be characterized by the values of G and G" changing nearly in parallel and by the viscosity variation having a frequency with a considerably different exponent 0. This can be considered as an indication of the extremely broad spectrum of internal relaxations in these macromolecules. To illustrate this effect, the frequency dependences of the complex viscosities for both linear... [Pg.25]

The estimation of f from Stokes law when the bead is similar in size to a solvent molecule represents a dubious application of a classical equation derived for a continuous medium to a molecular phenomenon. The value used for f above could be considerably in error. Hence the real test of whether or not it is justifiable to neglect the second term in Eq. (19) is to be sought in experiment. It should be remarked also that the Kirkwood-Riseman theory, including their theory of viscosity to be discussed below, has been developed on the assumption that the hydrodynamics of the molecule, like its thermodynamic interactions, are equivalent to those of a cloud distribution of independent beads. A better approximation to the actual molecule would consist of a cylinder of roughly uniform cross section bent irregularly into a random, tortuous configuration. The accuracy with which the cloud model represents the behavior of the real polymer chain can be decided at present only from analysis of experimental data. [Pg.610]

The transition from single- to many-chain behavior already becomes obvious qualitatively from a line shape analysis of the NSE spectra (see Fig. 60) [116]. For dilute solutions (c = 0.05) the line shape parameter (3 is equal to about 0.7 for all Q-values, which is characteristic of the Zimm relaxation. In contrast, in semi-dilute solutions (e.g. c = 0.18), ft-values of 0.7 are only found at larger Q-values, whereas P-values of about 1.0, as predicted for collective diffusion [see Eq. (128)] are obtained at small Q-values. A similar observation was reported by [163]. [Pg.114]

It is always easy to calculate idealized scattering curves for perfect networks. The experimental systems vary from the ideal to a greater or lesser degree. Accordingly, any estimate of the correctness of a theoretical analysis which is based on an interpretation of experiment must be put forth with caution since defects in the network may play a role in the physical properties being measured. This caveat applies to the SANS measurement of chain dimensions as well as to the more common determinations of stress-strain and swelling behavior. [Pg.267]

Philippova and Starodubtzev have also extensively studied the complex-ation behavior of polyacids and PEG, especially, the system of crosslinked of poly(methacrylic acid) and linear poly(ethylene glycol) (Philippova and Starodubtzev, 1995 Philippova et al., 1994). They observed that decreasing the molecular weight of PEG from 6000 to 1500 resulted in its slower diffusion into the swollen network of PMAA, and a drastic decrease in both the stability and equilibrium composition of the intermacromolecular complex. Analysis of dried polymer networks of PMAA with absorbed PEG chains by FT-IR spectroscopy revealed the presence of two types of hydrogen bonded structures (1) dimers of methacrylic acid at absorption frequency of 1700 cm-1 and (2) interpolymer complexes of PMAA and PEG at 1733 cm-1. In addition, they also suggested as a result of their studies, that the hydrogen bonded dimer of PMAA forms preferentially to the intermacromolecular complex between the PMAA network and PEG chains. [Pg.94]


See other pages where Behavior chain analysis is mentioned: [Pg.147]    [Pg.147]    [Pg.147]    [Pg.147]    [Pg.269]    [Pg.234]    [Pg.166]    [Pg.52]    [Pg.93]    [Pg.33]    [Pg.35]    [Pg.394]    [Pg.378]    [Pg.210]    [Pg.167]    [Pg.204]    [Pg.895]    [Pg.137]    [Pg.227]    [Pg.389]    [Pg.46]    [Pg.47]    [Pg.158]    [Pg.23]    [Pg.30]    [Pg.31]    [Pg.148]    [Pg.199]    [Pg.184]    [Pg.56]    [Pg.463]    [Pg.109]    [Pg.107]    [Pg.125]    [Pg.41]    [Pg.303]    [Pg.65]    [Pg.634]    [Pg.314]   
See also in sourсe #XX -- [ Pg.147 , Pg.176 , Pg.182 , Pg.183 ]




SEARCH



Analysis behavioral

© 2024 chempedia.info