Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Beckmann rearrangements intermediates

The course of the reaction is dependent on the configuration of the oxime. The (Z)-oxime gave 1,2-benzisoxazoles as the primary product while the (E)-oxime generally produced a Beckmann rearrangement product with or without subsequent cyclization to a benzisoxazole (Scheme 167) (67AHC(8)277). Bunnett conducted a kinetic study on the reaction shown in Scheme 167 and determined that cyclization to intermediate (551) was the rate determining step (61JA3805). [Pg.115]

The ready availability and low cost of A -20-keto steroids from the degradation of sapogenins has led to intensive study of methods for the preparation of androstanes via these intermediates. The simplest, most practical and most widely used method on a production scale is the Beckmann rearrangement of -20-oximinopregnenes ... [Pg.140]

The intermediates (7) have been independently generated in aqueous solution. Note the similarity of this mechanism to those of insertion of CH2 (18-9) and of O (18-19). The three reactions are essentially analogous, both in products and in mechanism. Also note the similarity of the latter part of this mechanism to that of the Beckmann rearrangement (18-17). [Pg.1415]

Regioselective Beckmann rearrangements were used as key steps in the synthesis of phosphonoalkyl azepinones (Scheme 36) [43b] and in a formal total synthesis of the protein kinase C inhibitor balanol (Scheme 37) the optically active azide 197 derived from cyclohexadiene mono-oxide was converted into ketone 198 in several steps. After preparation of the oxime tosylates 199 (2.3 1 mixture), a Lewis acid mediated regioselective Beckmann rearrangement gave the lactams 200 and 201 in 66% and 9% yield, respectively. Lactam 201 underwent a 3-e im-ination to give additional 200, which served as a key intermediate in a balanol precursor synthesis (Scheme 37) [43 cj. [Pg.157]

Zeolites have also been described as efficient catalysts for acylation,11 for the preparation of acetals,12 and proved to be useful for acetal hydrolysis13 or intramolecular lactonization of hydroxyalkanoic acids,14 to name a few examples of their application. A number of isomerizations and skeletal rearrangements promoted by these porous materials have also been reported. From these, we can underline two important industrial processes such as the isomerization of xylenes,2 and the Beckmann rearrangement of cyclohexanone oxime to e-caprolactam,15 which is an intermediate for polyamide manufacture. Other applications include the conversion of n-butane to isobutane,16 Fries rearrangement of phenyl esters,17 or the rearrangement of epoxides to carbonyl compounds.18... [Pg.33]

The focus of the next four chapters (Chapters 14-17) is mainly on the theoretical/computational aspects. Chapter 14 by T. S. Sorensen and E. C. F. Yang examines the involvement of p-hydrido cation intermediates in the context of the industrially important heptane to toluene dehydrocyclization process. Chapter 15 by P. M. Esteves et al. is devoted to theoretical studies of carbonium ions. Chapter 16 by G. L. Borosky and K. K. Laali presents a computational study on aza-PAH carbocations as models for the oxidized metabolites of Aza-PAHs. Chapter 17 by S. C. Ammal and H. Yamataka examines the borderline Beckmann rearrangement-fragmentation mechanism and explores the influence of carbocation stability on the reaction mechanism. [Pg.10]

Solid-state photochemistry of (—)-2-chloro-2-nitrosocamphane 275 was studied145 by irradiation of the blue-crystal with red light to invert the configuration at C(2) (equation 123). This also causes a photochemically initiated Beckmann rearrangement to form chloroxime 276 to give nitroxide radical 278 (equation 124). The intermediate chloro oxime 276 is proposed to arise from the njr excitation and is believed to be the common intermediate for the photo-epimerization and Beckmann rearrangement. Extended... [Pg.804]

References in parentheses refer to the preparation of intermediates or to older methods. Assuming that the acetamido compound is prepared via Beckmann rearrangement from 2-acetyldibenzothiophene. s... [Pg.255]

Organoaluminum-promoted Beckmann rearrangement/methylation of cyclohexanone oxime mesylate, followed by allylation of ketimine 40a and Mannich cyclization of the intermediate iminium-allylsilane, provides piperidine 40b possessing cxo-unsaturation (08BKC1669). [Pg.69]

The main intermediate of the rearrangement may be a nitrilium ion (225) in some cases or an imidate (226) in others. The resulting intermediate reacts with water to produce the amide (218) after tautomerization. If other nucleophiles (Nu ) are present, they can intercept the reactive intermediates (both inter- or intra-molecularly) and several different imino-substituted derivatives (227) can be formed. These rearrangement-addition reactions will be analysed later in this chapter as they can effectively broaden the scope of the Beckmann rearrangement reaction (Sections VI.D.2 and VI.E.2). [Pg.388]

Several pathways may be possible for the Beckmann fragmentation reaction (equations 68 and 69). Stepwise processes may occur (equation 68), but stereospecific concerted fragmentations are also common (equation 69). Stepwise processes may follow different routes, but in most cases the fragmentation may have the same intermediate as the Beckmann rearrangement the nitrilium ion. [Pg.391]

The Beckmann rearrangement of ketoximes with triphenylphosphine and iV-chloro-succinimide occurs at room temperature almost instantaneously and their corresponding secondary amides are obtained in high yields (equation 83). The triphenylphosphine 271 is activated by the iV-chlorosuccinimide 270 affording the salt 272, which is attacked by the iV-hydroxy group of the oxime 217 forming the intermediate 273. [Pg.403]

A simplified mechanism for the Beckmann rearrangements and important related reactions is shown hi Scheme 9. Summarizing the mechanism section, the key step of the reaction is the migration of an a-carbon group to the electronically deficient nitrogen atom of the oxime. A nitrilium ion in some cases or an imidate in others are key intermediates in the reaction. Their destiny determines the course of the transformation. Basically, three different pathways may be possible and can be synthetically exploited ... [Pg.414]

The intermediate may be trapped by other nucleophiles (different from water) and diverse products may be obtained. The interception of the intermediate may occur inter- or intra-moleculary, the latter providing a helpful tool to produce a new ring system (Scheme 9, pathway 2). These reactions are sometimes referred to, respectively, as Beckmann rearrangement-addition and Beckmann rearrangement-cyclization reactions. [Pg.414]

Fragmentation of the intermediate or concerted formation of nitriles from the activated oxime (Scheme 9, pathway 3) this is the Beckmann fragmentation. In some circumstances this pathway becomes dominant, particularly when there are quaternary carbons adjacent to the oxime. This transformation has found particular utility in ring-cleavage processes (sometimes called abnormal or second-order Beckmann rearrangements). [Pg.414]

Various imidates 227 can be produced by trapping the electrophilic intermediate of the Beckmann rearrangement with a nucleophile (Nu ) other than water (equation 109). [Pg.418]

Pathway 2 of Scheme 9 corresponds to one of the most interesting developments in the Beckmann rearrangement chemistry. By trapping of the electrophilic intermediate with a nucleophile (Nu ) other than water, an imine derivative 227 is produced that may be used for further transformations. Carbon or heteroatom nucleophiles have been used to trap the nitrilium intermediate. Reducing agents promote the amine formation. More than one nucleophile may be added (for example, two different Grignard reagents can be introduced at the electrophilic carbon atom). Some of the most used transformations are condensed in Scheme 11. [Pg.419]

When the nucleophile is already present as a part of the starting oxime (for example, a heteroatom or a C=C double bond), intramolecular trapping of the electrophilic intermediate is possible and a new cycle is formed. This transformation is usually referred to as a Beckmann Rearrangement-Cychzation reaction. Two modes of ring closure may be possible, depending on the oxime structure (equations 111 and 112) ... [Pg.420]

Aromatic donble bonds may also be nsed effectively to trap the electrophilic intermediate (electrophilic aromatic snbstitntion). The Beckmann rearrangement-cyclization seqnence has fonnd ntihty in the synthesis of the isoquinoline nucleus . ... [Pg.421]

Pollini and colleagues converted D(—)-quinic acid in five steps into a chiral oxime 395, R = H in an enantiomeric pure form and subjected this oxime to a Beckmann rearrangement (equation 161). Even though the reaction lacked selectivity, 395 was useful in the synthesis of the chiral epoxide 396, a key intermediate in the synthesis of (—)-Balanol 397. The same authors also prepared the isomeric epoxide 398. [Pg.439]

The electrophilic intermediate formed during the Beckmann rearrangement may be trapped by nucleophiles other than water. Strictly speaking, these reactions do not fit into the classical rearrangement reaction type. However, due to the fact that the carbon framework changes during the course of the reaction and to the similarities with the classical Beckmann rearrangement process, this topic will be analysed in the present chapter. [Pg.450]

Grignard reagents may themselves be used to induce the Beckmann rearrangement, trapping the reactive intermediate. A new and highly efficient one-step synthesis of 2-arylated 1-benzocines 440 by a Beckmann rearrangement was recently devised (equation 187). [Pg.450]


See other pages where Beckmann rearrangements intermediates is mentioned: [Pg.165]    [Pg.165]    [Pg.209]    [Pg.294]    [Pg.100]    [Pg.22]    [Pg.38]    [Pg.252]    [Pg.103]    [Pg.110]    [Pg.1416]    [Pg.64]    [Pg.262]    [Pg.711]    [Pg.32]    [Pg.293]    [Pg.194]    [Pg.265]    [Pg.370]    [Pg.388]    [Pg.398]    [Pg.401]    [Pg.408]    [Pg.411]    [Pg.450]    [Pg.452]   
See also in sourсe #XX -- [ Pg.388 , Pg.389 ]




SEARCH



Beckmann rearrangment

Imidates Beckmann rearrangement intermediates

Intermediate rearrangement

Photo-Beckmann rearrangement oxaziridine intermediate

© 2024 chempedia.info