Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basis functions Schrodinger equation

This makes it desirable to define other representations in addition to the electronically adiabatic one [Eqs. (9)-(12)], in which the adiabatic electronic wave function basis set used in the Bom-Huang expansion (12) is replaced by another basis set of functions of the electronic coordinates. Such a different electronic basis set can be chosen so as to minimize the above mentioned gradient term. This term can initially be neglected in the solution of the / -electionic-state nuclear motion Schrodinger equation and reintroduced later using perturbative or other methods, if desired. This new basis set of electronic wave functions can also be made to depend parametrically, like their adiabatic counterparts, on the internal nuclear coordinates q that were defined after Eq. (8). This new electronic basis set is henceforth refened to as diabatic and, as is obvious, leads to an electronically diabatic representation that is not unique unlike the adiabatic one, which is unique by definition. [Pg.188]

U(qJ is referred to as an adiabatic-to-diabatic transformation (ADT) matrix. Its mathematical sbucture is discussed in detail in Section in.C. If the electronic wave functions in the adiabatic and diabatic representations are chosen to be real, as is normally the case, U(q ) is orthogonal and therefore has n n — l)/2 independent elements (or degrees of freedom). This transformation mabix U(qO can be chosen so as to yield a diabatic electronic basis set with desired properties, which can then be used to derive the diabatic nuclear motion Schrodinger equation. By using Eqs. (27) and (28) and the orthonormality of the diabatic and adiabatic electronic basis sets, we can relate the adiabatic and diabatic nuclear wave functions through the same n-dimensional unitary transformation matrix U(qx) according to... [Pg.189]

When the wave function is completely general and pennitted to vary in the entire Hilbert space the TDVP yields the time-dependent Schrodinger equation. However, when the possible wave function variations are in some way constrained, such as is the case for a wave function restricted to a particular functional form and represented in a finite basis, then the corresponding action generates a set of equations that approximate the time-dependent Schrodinger equation. [Pg.224]

Exact solutions to the electronic Schrodinger equation are not possible for many-electron atoms, but atomic HF calculations have been done both numerically and within the LCAO model. In approximate work, and for molecular applications, it is desirable to use basis functions that are simple in form. A polyelectron atom is quite different from a one-electron atom because of the phenomenon of shielding", for a particular electron, the other electrons partially screen the effect of the positively charged nucleus. Both Zener (1930) and Slater (1930) used very simple hydrogen-like orbitals of the form... [Pg.157]

There are two types of basis functions (also called Atomic Orbitals, AO, although in general they are not solutions to an atomic Schrodinger equation) commonly used in electronic structure calculations Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). Slater type orbitals have die functional form... [Pg.150]

One way in which we can solve the problem of propagating the wave function forward in time in the presence of the laser field is to utilize the above knowledge. In order to solve the time-dependent Schrodinger equation, we normally divide the time period into small time intervals. Within each of these intervals we assume that the electric field and the time-dependent interaction potential is constant. The matrix elements of the interaction potential in the basis of the zeroth-order eigenfunctions y i Vij = (t t T(e(t)) / ) are then evaluated and we can use an eigenvector routine to compute the eigenvectors, = S) ... [Pg.70]

We should also mention that basis sets which do not actually comply with the LCAO scheme are employed under certain circumstances in density functional calculations, i. e., plane waves. These are the solutions of the Schrodinger equation of a free particle and are simple exponential functions of the general form... [Pg.115]

A set of coupled equations for the evolution of the basis function coefficients is obtained by substituting the wavefunction ansatz of Eqs. (2.5)-(2.7) into the nuclear Schrodinger equation... [Pg.448]

Ab initio quantum mechanics is based on a rigorous treatment of the Schrodinger equation (or equivalent matrix methods)4-7 which is intellectually satisfying. While there are a number of approximations made, it relies on a set of equations and a few physical constants.8 The use of ab initio methods on large systems is limited if not impossible, even with the fastest computers available. Since the size of an ab initio calculation is defined by the number of basis functions in the system, ab initio calculations are extremely costly for anything past the second row in the periodic table, and for all systems with more than 20 or 30 total atoms. [Pg.38]

A numerical solution of the Schrodinger equation in Eq. [1] often starts with the discretization of the wave function. Discretization is necessary because it converts the differential equation to a matrix form, which can then be readily handled by a digital computer. This process is typically done using a set of basis functions in a chosen coordinate system. As discussed extensively in the literature,5,9-11 the proper choice of the coordinate system and the basis functions is vital in minimizing the size of the problem and in providing a physically relevant interpretation of the solution. However, this important topic is out of the scope of this review and we will only discuss some related issues in the context of recursive diagonalization. Interested readers are referred to other excellent reviews on this topic.5,9,10... [Pg.286]

If the solution 4>(t) to the time-dependent Schrodinger equation is expanded as a linear combination of time-independent orthonormal many-electron basis functions i.e. [Pg.358]

Since the exact solution of the Hartree-Fock equation for molecules also proved to be impossible, numerical methods approximating the solution of the Schrodinger s equation at the HF limit have been developed. For example, in the Roothan-Hall SCF method, each SCF orbital is expressed in terms of a linear combination of fixed orbitals or basis sets ((Pi). These orbitals are fixed in the sense that they are not allowed to vary as the SCF calculation proceeds. From n basis functions, new SCF orbitals are generated by... [Pg.108]

The method of many-electron Sturmian basis functions is applied to molecnles. The basis potential is chosen to be the attractive Conlomb potential of the nnclei in the molecnle. When such basis functions are used, the kinetic energy term vanishes from the many-electron secular equation, the matrix representation of the nnclear attraction potential is diagonal, the Slater exponents are automatically optimized, convergence is rapid, and a solution to the many-electron Schrodinger eqeuation, including correlation, is obtained directly, without the use ofthe self-consistent field approximation. [Pg.19]


See other pages where Basis functions Schrodinger equation is mentioned: [Pg.2202]    [Pg.17]    [Pg.11]    [Pg.80]    [Pg.268]    [Pg.252]    [Pg.485]    [Pg.69]    [Pg.98]    [Pg.195]    [Pg.8]    [Pg.210]    [Pg.148]    [Pg.66]    [Pg.189]    [Pg.156]    [Pg.215]    [Pg.411]    [Pg.445]    [Pg.447]    [Pg.455]    [Pg.461]    [Pg.221]    [Pg.138]    [Pg.287]    [Pg.98]    [Pg.99]    [Pg.398]    [Pg.236]    [Pg.33]    [Pg.215]    [Pg.3]    [Pg.91]    [Pg.20]    [Pg.27]   
See also in sourсe #XX -- [ Pg.363 , Pg.364 , Pg.365 , Pg.366 , Pg.367 , Pg.368 , Pg.369 , Pg.370 , Pg.371 , Pg.372 ]




SEARCH



Basis functions

Equations function

Functional equation

© 2024 chempedia.info