Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basic nuclear magnetic resonance

In the last three decades, nuclear magnetic resonance has become a powerful tool for investigating the structural and physical properties of matter. Today, nuclear magnetic resonance is the physical method most widely used in analytical chemistry. For special applications, e.g. relaxation time measurements, there is available a variety of modifications of the basic nuclear magnetic resonance experiments such as pulse and spin-echo methods. In the course of this development and when electronic computers were provided at a reasonable price, Fourier transform spectroscopy was applied to nuclear magnetic resonance in the middle of the sixties. At that time, Fourier methods were already used to a large extent in far infrared spectroscopy (see Refs. and references cited therein). [Pg.90]

Nuclear spin, magnetisation and the basic nuclear magnetic resonance experiment... [Pg.216]

Figure Bl.13.6. The basic elements of a NOESY spectrum. (Reproduced by penuission of Wiley from Williamson M P 1996 Encyclopedia of Nuclear Magnetic Resonance ed D M Grant and R K Harris (Chichester Wiley) pp 3262-71). Figure Bl.13.6. The basic elements of a NOESY spectrum. (Reproduced by penuission of Wiley from Williamson M P 1996 Encyclopedia of Nuclear Magnetic Resonance ed D M Grant and R K Harris (Chichester Wiley) pp 3262-71).
W. S. Price 1997, (Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion Part 1. Basic theory), Concepts Magn. Reson. 9, 299-336. [Pg.45]

The use of theoretical methods in the study of bicyclic systems with P-, As-, Sb-, or Bi- bridgehead atoms has contributed to an increased understanding of the geometry, stability, and ring-strain effects of these systems. In addition, important data relating to basicity and the interpretation of nuclear magnetic resonance (NMR) and X-ray data have been generated. A vast majority of the work done has focused on P. [Pg.528]

Reaction of the 2-aminooxazoline 160 with the piperidinone 161 under basic conditions gives a mixture of linear and angular oxazolopyridopyrimidines, 162 and 163, the stmctures of which were confirmed by nuclear magnetic resonance (NMR) and X-ray crystallography of some derivatives (Equation 40) <1999T12819>. [Pg.890]

The basic instrumentation used for spectrometric measurements has already been described in Chapter 7 (p. 277). The natures of sources, monochromators, detectors, and sample cells required for molecular absorption techniques are summarized in Table 9.1. The principal difference between instrumentation for atomic emission and molecular absorption spectrometry is in the need for a separate source of radiation for the latter. In the infrared, visible and ultraviolet regions, white sources are used, i.e. the energy or frequency range of the source covers most or all of the relevant portion of the spectrum. In contrast, nuclear magnetic resonance spectrometers employ a narrow waveband radio-frequency transmitter, a tuned detector and no monochromator. [Pg.355]

Price, W.S. 1998a. Pulsed-field gradient nuclear magnetic resonance as a tool for studying translational diffusion. II. Experimental aspects. Basic theory. Concepts in Magn. Reson. 10, 197-237. Price, W.S. 1998b. NMR imaging. In Annual Reports on NMR Spectroscopy (G.A. Webb, ed.), Vol. 34, pp. 140-216. Academic Press, New York. [Pg.97]

H. Noth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy of Boron Compounds, in NMR - Basic Principles and Progress, P. Diehl, E. Fluck, R. Kosfeld, eds., Vol. 14, Springer Verlag, Berlin-Heidelberg-New York, 1978. [Pg.308]

The second basic approach to characterizing seawater DOM is to concentrate a fraction of the total mixture by chemical or physical means into either dry powder or concentrated solution. The solution can be analyzed using a wide array of methods (e.g., elemental analysis, biomarker analysis, mass, or nuclear magnetic resonance spectrometry) to which these isolates are amenable. [Pg.59]

There are two basic ways to look for explosive material. They differ in their point of focus. Some sensors seek the mass of explosive material within a device. These are particularly useful when the device is well sealed and its surface is well cleaned of stray explosive molecules, or when the explosive being used is nonaromatic, that is, it does not readily release molecules from its bulk. We will refer to these as bulk sensors. They include X-ray techniques, both transmission and backscatter neutron activation in several techniques y -ray excitation, in either transmission or backscatter modes and nuclear resonance techniques, either nuclear magnetic resonance (NMR) or nuclear quadrupole resonance (NQR). Bruschini [1] has described these thoroughly. They are also described by the staff of the Jet Propulsion Laboratory [2], The following forms a very brief synopsis. [Pg.4]


See other pages where Basic nuclear magnetic resonance is mentioned: [Pg.256]    [Pg.256]    [Pg.1519]    [Pg.379]    [Pg.72]    [Pg.114]    [Pg.444]    [Pg.167]    [Pg.257]    [Pg.4]    [Pg.367]    [Pg.4]    [Pg.483]    [Pg.1132]    [Pg.43]    [Pg.136]    [Pg.400]    [Pg.282]    [Pg.89]    [Pg.637]    [Pg.25]    [Pg.164]    [Pg.172]    [Pg.93]    [Pg.38]    [Pg.9]    [Pg.245]    [Pg.121]    [Pg.54]    [Pg.294]    [Pg.313]    [Pg.83]    [Pg.98]    [Pg.7]    [Pg.150]    [Pg.219]   
See also in sourсe #XX -- [ Pg.511 ]




SEARCH



Nuclear Basics

© 2024 chempedia.info