Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Base-catalyzed aldol- and Michael-type

Fringuelli, F., Piermatti, O., Pizzo, F. Base-catalyzed aldol- and Michael-type condensations in aqueous media. Organic Synthesis in Water 1998,250-261. [Pg.629]

Base-catalyzed aldol- and Michael-type condensations in aqueous media... [Pg.250]

BASE-CATALYZED ALDOL- AND MICHAEL-TYPE CONDENSATIONS 251... [Pg.251]

With optimized process operation the reaction is strongly regioselective. The process is commercialized by Rhone-Poulenc using Ruhrchemie s TPPTS and yields precursors for vitamin E cf. Section 3.1.1.1.3 [163, 164] Sc or Y triflates catalyze aqueous biphasic reactions which are alternatives to base-catalyzed processes such as aldol or Michael-type conversions [257]. [Pg.620]

The Knoevenagel condensation is a base-catalyzed aldol-type reaction, and the exact mechanism depends on the substrates and the type of catalyst used. The first proposal for the mechanism was set forth by A.C.O. Hann and A. Lapworth Hann-Lapworth mechanism) In 1904." When tertiary amines are used as catalysts, the formation of a p-hydroxydlcarbonyl Intermediate is expected, which undergoes dehydration to afford the product. On the other hand, when secondary or primary amines are used as catalyst, the aldehyde and the amine condense to form an Imlnlum salt that then reacts with the enolate. Finally, a 1,2-ellmlnatlon gives rise to the desired a,p-unsaturated dicarbonyl or related compounds. The final product may undergo a Michael addition with the excess enolate to give a bis adduct. [Pg.242]

Alkali-exchanged mesoporous molecular sieves are suitable solid base catalysts for the conversion of bulky molecules which cannot access the pores of zeolites. For example, Na- and Cs-exchanged MCM-41 were active catalysts for the Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate (pKa=10.7) but low conversions were observed with the less acidic diethyl malonate (pKa=13.3) [123]. Similarly, Na-MCM-41 catalyzed the aldol condensation of several bulky ketones with benzaldehyde, including the example depicted in Fig. 2.38, in which a flavonone is obtained by subsequent intramolecular Michael-type addition [123]. [Pg.81]

The Michael reaction is the conjugate addition of a soft enolate, commonly derived from a P-dicarbonyl compound 24, to an acceptor-activated alkene such as enone 41a, resulting in a 1,5-dioxo constituted product 42 (Scheme 8.14) [52]. Traditionally, these reactions are catalyzed by Bronsted bases such as tertiary amines and alkali metal alkoxides and hydroxides. However, the strongly basic conditions are often a limiting factor since they can cause undesirable side- and subsequent reactions, such as aldol cyclizations and retro-Claisen-type decompositions. To address this issue, acid- [53] and metal-catalyzed [54] Michael reactions have been developed in order to carry out the reactions under milder conditions. [Pg.226]

The second part of the chapter deals with several kinds of asymmetric reactions catalyzed by unique heterobimetallic complexes. These reagents are lanthanoid-alkali metal hybrids which form BINOL derivative complexes (LnMB, where Ln = lanthanoid, M = alkali metal, and B = BINOL derivative). These complexes efficiently promote asymmetric aldol-type reactions as well as asymmetric hydrophosphonylations of aldehydes (catalyzed by LnLB, where L = lithium), asymmetric Michael reactions (catalyzed by LnSB, where S = sodium), and asymmetric hydrophosphonylations of imines (catalyzed by LnPB, where P = potassium) to give the corresponding desired products in up to 98% ee. Spectroscopic analysis and computer simulations of these asymmetric reactions have revealed the synergistic cooperation of the two different metals in the complexes. These complexes are believed to function as both Brpnsted bases and as Lewis acids may prove to be applicable to a variety of new asymmetric catalytic reactions.1,2... [Pg.202]

Transition metal catalysis of the Michael reaction of 1,3-dicarbonyl compounds with acceptor activated alkenes has been known since the early 1980 s 2>3 It is a valuable alternative to the classic base catalysis of the reaction. Because of the mild and neutral conditions, the chemoselectivity of these reactions is superior to that provided by base catalysis, since the latter suffers from various unwanted side or subsequent reactions, such as aldol cyclizations, ester solvolyses or retro-Claisen type decompositions. A number of transition metal and lanthanide compounds have been reported to catalyze the Michael reaction, but FeCb 6 H20 is one of the most efficient systems to date. A number of 3-diketones or p-oxo esters and MVK are cleanly converted to the corresponding Michael reaction products within a few hours at room... [Pg.271]

Numerous types of basic heterogeneous catalysts, such as alkahne earth metal oxide, anion exchange resins and alkali metal compounds supported on alumina or zeolite can catalyze various chemical reactions such as isomerization, aldol, Michael, and Knoevenagel condensation, oxidation and transesterification [1], Today considerable attention is devoted to the production of biodiesel (FAMEs) as an alternative for petroleum-derived diesel fuel. Biodiesel is synthesized by direct transesterification of vegetable oil or animal fat with a short-chain alcohol, viz. methanol, ethanol, and isopropanol in presence of an acid, base or enzymatic catalyst [2], Considering the advantages of solid base catalysts, for easy separation and recovery, reduced corrosion and environmental acceptance [1], many studies have been conducted on basic heterogeneous catalysts development for biodiesel production [3-13],... [Pg.775]


See other pages where Base-catalyzed aldol- and Michael-type is mentioned: [Pg.263]    [Pg.791]    [Pg.117]    [Pg.9]    [Pg.357]    [Pg.855]    [Pg.505]    [Pg.286]    [Pg.77]    [Pg.20]    [Pg.327]    [Pg.538]    [Pg.89]    [Pg.372]    [Pg.100]    [Pg.100]    [Pg.246]    [Pg.139]   


SEARCH



Aldol base-catalyzed

Base-catalyzed aldol- and Michael-type condensations in aqueous media

© 2024 chempedia.info