Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic orbitals energy levels

Atomic orbital energy level diagrams. To simplify these diagrams, the orbitals are shown at the same energies for different atoms. Actually, the energy of an orbital decreases as the number of protons in the atom increases.Thus the Ip orbitals of fluorine are lower in energy than the Ip orbitals of oxygen. [Pg.64]

Show an atomic orbital energy level diagram for these atoms a) Si b) A1 c) Cl... [Pg.65]

Fig. 10.34 The atomic orbital energy levels of H and N atoms and the molecular orbitals they form. The bonding orbital has predominantly N atom character and the antibonding orbital has predominantly H atom character. Energies are in electronvolts. Fig. 10.34 The atomic orbital energy levels of H and N atoms and the molecular orbitals they form. The bonding orbital has predominantly N atom character and the antibonding orbital has predominantly H atom character. Energies are in electronvolts.
The splitting of the d orbital energy levels when ligands are bonded to a central transition atom or ion has already been mentioned (p. 60). Consider the two ions [Co(NH3)g] and [Co(NH3)g] we have just discussed. The splitting of the d orbital energy levels for these two ions is shown in Figure 13.2. [Pg.365]

In addition to total energy and gradient, HyperChem can use quantum mechanical methods to calculate several other properties. The properties include the dipole moment, total electron density, total spin density, electrostatic potential, heats of formation, orbital energy levels, vibrational normal modes and frequencies, infrared spectrum intensities, and ultraviolet-visible spectrum frequencies and intensities. The HyperChem log file includes energy, gradient, and dipole values, while HIN files store atomic charge values. [Pg.51]

Figure 7.14 Molecular orbital energy level diagram for first-row homonuclear diatomic molecules. The 2p, 2py, 2p atomic orbitals are degenerate in an atom and have been separated for convenience. (In O2 and F2 the order of Figure 7.14 Molecular orbital energy level diagram for first-row homonuclear diatomic molecules. The 2p, 2py, 2p atomic orbitals are degenerate in an atom and have been separated for convenience. (In O2 and F2 the order of <y 2p and Hu -P is reversed.)...
Step 2 Use matching valence-shell atomic orbitals to build bonding and antibonding molecular orbitals and draw the resulting molecular orbital energy-level diagram (Figs. 3.31 and 3.32). [Pg.244]

FIGURE 3.33 A typical d molecular orbital energy-level diagram for a heteronuclear diatomic molecule AB the relative contributions of the atomic orbitals to the molecular orbitals are represented by the relative sizes of the spheres and the horizontal position of the boxes. In this case, A is the more electronegative of the two elements. [Pg.246]

The molecular orbital energy-level diagrams of heteronuclear diatomic molecules are much harder to predict qualitatitvely and we have to calculate each one explicitly because the atomic orbitals contribute differently to each one. Figure 3.35 shows the calculated scheme typically found for CO and NO. We can use this diagram to state the electron configuration by using the same procedure as for homonuclear diatomic molecules. [Pg.246]

FIGURE 3.37 The molecular orbital energy-level diagram for methane and the occupation of the orbitals by the eight valence electrons of the atoms. [Pg.247]

FIGURE 3.40 The molecular orbital energy-level diagram for SFf, and the occupation of the orbitals by the 12 valence electrons of the atoms. Note that no antibonding orbitals are occupied and that there is a net bonding interaction even though no d-orbitals are involved. [Pg.249]

In a nickel-containing enzyme various groups of atoms in the enzyme form a complex with the metal, which was found to be in the +2 oxidation state and to have no unpaired electrons. What is the most probable geometry of the Ni2+ complex (a) octahedral (b) tetrahedral (c) square planar (see Exercise 16.96) Justify your answer by drawing the orbital energy-level diagram of the ion. [Pg.817]

The colors of fireworks depend on the energies of the atomic orbitals of the various atomic ions, but orbital energy levels have consequences that are much more far-reaching. Orbital energies determine the stabilities of atoms and how atoms react. The structure of the periodic table is based on orbital energy levels. In this chapter we explore the details of orbital energies and relate them to the form and structure of the periodic table. This provides the foundation for interpreting chemical behavior patterns. [Pg.502]

A complete specification of how an atom s electrons are distributed in its orbitals is called an electron configuration. There are three common ways to represent electron configurations. One is a complete specification of quantum numbers. The second is a shorthand notation from which the quantum numbers can be inferred. The third is a diagrammatic representation of orbital energy levels and their occupancy. [Pg.522]

Write the shorthand electron configuration and draw the ground-state orbital energy level diagram for the valence electrons in a sulfur atom. [Pg.527]

C08-0052. Which of the atoms of Problem 8.15 are paramagnetic Draw orbital energy level diagrams to support your answer. [Pg.560]

Figure 4.105 A schematic perturbative-analysis diagram for occupied valence MOs (center) of PtH42 (B3LYP/LANL2DZ level), showing tie-lines for analysis in terms of AO basis functions (left) versus NAOs (right). (A tie-line is shown when the AO or NAO contributes at least 5% to the connected MO.) Note the much smaller number of contributing orbitals, the sparser tie-line patterns, and the more realistic physical range of atomic orbital energies for NAOs than for standard Gaussian-basis AOs. Figure 4.105 A schematic perturbative-analysis diagram for occupied valence MOs (center) of PtH42 (B3LYP/LANL2DZ level), showing tie-lines for analysis in terms of AO basis functions (left) versus NAOs (right). (A tie-line is shown when the AO or NAO contributes at least 5% to the connected MO.) Note the much smaller number of contributing orbitals, the sparser tie-line patterns, and the more realistic physical range of atomic orbital energies for NAOs than for standard Gaussian-basis AOs.
Energy level diagram of the sodium atom. The energy levels are denoted by the values for the principal quantum number , the orbital quantum number/, and the spin quantum number s. Levels with 1 = 0 are not split for / = 1 two separate levels are drawn (s = 1/2) for/> 1 the splitting is too small to be shown in the figure. Wavelengths of a few special transitions are given in nanometers. [Pg.286]

The principal characteristic of the transition elements is an incomplete electronic subshell that confers specific properties on the metal concerned. Ligand systems may participate in coordination not only by electron donation to the 3d levels in the first transition series but also by donation to incomplete outer 4s and 4p shells. Figure 5.1 shows that the differences in orbital energy levels between the 4s, 4p and 3d orbitals are much smaller than, for example, the difference between the inner 2s and 2p levels. Consequently, transitions between the 4s, 4p and 3d levels can easily take place and coordination is readily achieved. The manner in which ligand groups are oriented in surrounding the central metal atom is determined by the number and energy levels of the electrons in the incomplete subshells. [Pg.235]


See other pages where Atomic orbitals energy levels is mentioned: [Pg.27]    [Pg.226]    [Pg.29]    [Pg.309]    [Pg.202]    [Pg.459]    [Pg.490]    [Pg.27]    [Pg.226]    [Pg.29]    [Pg.309]    [Pg.202]    [Pg.459]    [Pg.490]    [Pg.59]    [Pg.259]    [Pg.30]    [Pg.926]    [Pg.460]    [Pg.241]    [Pg.241]    [Pg.808]    [Pg.698]    [Pg.97]    [Pg.86]    [Pg.637]    [Pg.98]    [Pg.379]    [Pg.238]    [Pg.238]    [Pg.569]    [Pg.418]    [Pg.531]    [Pg.50]    [Pg.127]    [Pg.164]    [Pg.342]    [Pg.342]   
See also in sourсe #XX -- [ Pg.27 , Pg.30 ]




SEARCH



Atomic energy levels

Atomic orbitals core energy level

Atomic orbitals energy

Atomic orbitals energy level diagrams

ENERGY LEVELS OF ATOMIC ORBITALS

Energy atomic orbital

Energy levels, atom

Hydrogen atom orbital energy-level diagrams

Levels atomic

Orbital energy

Orbital energy level

Orbitals energy

© 2024 chempedia.info