Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Atomic energy use

The AEA of 1946 defined how the U.S. Government would regulate the use of the new nuclear technology. The development of nuclear weapons and atomic energy uses for the public were placed under civilian control as opposed to military control. The AEA of 1946 established the U.S. AEC that was chartered to develop and produce future atomic weapons and was also chartered to facilitate the peaceful uses of nuclear energy. [Pg.657]

For several years, the French Atomic Energy Commission (CEA) has developed modelling tools for ultrasonic NDT configurations. Implemented within the CIVA software for multiple technique NDT data acquisition and processing [1,2], these models are not only devoted to laboratory uses but also dedicated to ultrasonic operators without special training in simulation techniques. This approach has led us to develop approximate models carrying out the compromise between as accurate as possible quantitative predictions and simplicity, speed and intensive use in an industrial context. [Pg.735]

Figure B3.2.4. A schematic illustration of an energy-independent augmented plane wave basis fimction used in the LAPW method. The black sine fimction represents the plane wave, the localized oscillations represent the augmentation of the fimction inside the atomic spheres used for the solution of the Sclirodinger equation. The nuclei are represented by filled black circles. In the lower part of the picture, the crystal potential is sketched. Figure B3.2.4. A schematic illustration of an energy-independent augmented plane wave basis fimction used in the LAPW method. The black sine fimction represents the plane wave, the localized oscillations represent the augmentation of the fimction inside the atomic spheres used for the solution of the Sclirodinger equation. The nuclei are represented by filled black circles. In the lower part of the picture, the crystal potential is sketched.
Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simulation techniques the interaction between all pairs of atoms within a given cutoff radius must be considered. In contrast, to estimate changes in free energy using a stored trajectory only those interactions which are perturbed need be determined making the approach highly efficient. Fig. 5. To generate an ensemble using Molecular Dynamics or Monte-Carlo simulation techniques the interaction between all pairs of atoms within a given cutoff radius must be considered. In contrast, to estimate changes in free energy using a stored trajectory only those interactions which are perturbed need be determined making the approach highly efficient.
Basis sets can be constructed using an optimisation procedure in which the coefficients and the exponents are varied to give the lowest atomic energies. Some complications can arise when this approach is applied to larger basis sets. For example, in an atomic calculation the diffuse functions can move towards the nucleus, especially if the core region is described... [Pg.92]

A variant on this procedure produces a first approximation to the molecular mechanics (MM) heat paiameters (Chapters 4 and 5) for C—C and C—H. Instead of atomization energies, the enthalpies of formation of propane and butane (—25.02 and —30.02 kcal mol ) are put directly into the b vector. The results (2.51 kcal mol and —3.76 kcal mol ) are not very good approximations to the heat parameters actually used (2.45 kcal mol and —4.59 kcal mol ) because of other factors to be taken up later, but the calculation illustrates the method and there is rough agreement. [Pg.57]

The Bom-Oppenheimer approximation is not peculiar to the Huckel molecular orbital method. It is used in virtually all molecular orbital calculations and most atomic energy calculations. It is an excellent approximation in the sense that the approximated energies are very close to the energies we get in test cases on simple systems where the approximation is not made. [Pg.173]

In eonPast to the low-Ievel ealeulations using the STO-3G basis set, very high level ealeulations ean be earried out on atoms by using the Complete Basis Set-4 (CBS-4) proeedure of Petersson et al. (1991,1994). For atoms more eomplieated than H or He, the first ionization potential (IP[) ealeulation is a many-eleePon ealeulation in which we ealeulate the total energy of an atom and its monopositive ion and determine the IP of the first ionization reaetion... [Pg.241]

In the case of, the energy is wrong because the molecular orbital is not a linear combination of atomic orbitals, it is approximated by a linear combination of atomic orbitals. Use of scaled atomic orbitals... [Pg.306]

Calculate the energy (using Slater Condon rules) associated with the 2p valence electrons for the following states of the C atom. [Pg.316]

The researchers established that the potential energy surface is dependent on the basis set (the description of individual atomic orbitals). Using an ab initio method (6-3IG ), they found eight Cg stationary points for the conformational potential energy surface, including four minima. They also found four minima of Cg symmetry. Both the AMI and PM3 semi-empirical methods found three minima. Only one of these minima corresponded to the 6-3IG conformational potential energy surface. [Pg.62]

Because variations in accurate isotope ratio measurements typically concern only a few parts per 1000 by mass and there are no universal absolute ratios, it is necessary to define some standards. For this purpose, samples of standard substances are produced and made available at two major centers IAEA (International Atomic Energy Authority, U.K.) and NIST (National Institute for Standards and Technology, U.S.). Standards from other sources are also available. These primary standards can be used as such, or alternative standards can be employed if the primary ones are not available. However, any alternative standards need to be related accurately to the primary ones (see formulae below). For example, the material PDB (PeeDee belemnite), used particularly as a standard for the ratio of isotopes, is no longer readily available, and a new standard, VPDB,... [Pg.354]

MOs around them - rather as we construct atomic orbitals (AOs) around a single bare nucleus. Electrons are then fed into the MOs in pairs (with the electron spin quantum number = 5) in order of increasing energy using the aufbau principle, just as for atoms (Section 7.1.1), to give the ground configuration of the molecule. [Pg.226]

To examine the soUd as it approaches equUibrium (atom energies of 0.025 eV) requires molecular dynamic simulations. Molecular dynamic (MD) simulations foUow the spatial and temporal evolution of atoms in a cascade as the atoms regain thermal equiUbrium in about 10 ps. By use of MD, one can foUow the physical and chemical effects that induence the final cascade state. Molecular dynamics have been used to study a variety of cascade phenomena. These include defect evolution, recombination dynamics, Hquid-like core effects, and final defect states. MD programs have also been used to model sputtering processes. [Pg.397]

Analyses and experimental results used to assess the consequences of a severe potential accident have resulted in substantially reduced estimates of severe accident consequences. Comparing estimates made by the U.S. Atomic Energy Agency (27) in 1977 with those reported by the U.S. NRC (18,28) in 1990 shows that improved knowledge and plant modifications have reduced the cote damage frequency by a factor of 3—15, depending on reactor type. Additionally, the fractions of radioactive species that would be released are lower by a factor of 10—100,000, depending on the radioactive species. [Pg.237]

C. Frondel, in Proceedings of International Conference on Peaceful Uses of Atomic Energy, Vol. 6, Geneva, 1955, p. 568. [Pg.44]


See other pages where Atomic energy use is mentioned: [Pg.376]    [Pg.404]    [Pg.53]    [Pg.226]    [Pg.674]    [Pg.376]    [Pg.404]    [Pg.53]    [Pg.226]    [Pg.674]    [Pg.110]    [Pg.171]    [Pg.178]    [Pg.62]    [Pg.156]    [Pg.89]    [Pg.195]    [Pg.199]    [Pg.6]    [Pg.206]    [Pg.209]    [Pg.217]    [Pg.218]    [Pg.7]    [Pg.5]    [Pg.125]    [Pg.429]    [Pg.179]    [Pg.213]    [Pg.220]    [Pg.224]    [Pg.228]    [Pg.92]    [Pg.92]    [Pg.321]    [Pg.291]    [Pg.322]    [Pg.255]    [Pg.431]   
See also in sourсe #XX -- [ Pg.47 , Pg.53 ]




SEARCH



Energy use

© 2024 chempedia.info