Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric synthesis examples

Axial Chirality. For a system with four groups arranged out of the plane in pairs about an axis, the system is asymmetric when the groups on each side of the axis are different. Such a system is referred to as an axial chiral system. This structure can be considered a variant of central chirality. Some axial chiral molecules are allenes, alkylidene cyclohexanes, spiranes, and biaryls (along with their respective isomorphs). For example, compound 7a (binaphthol), which belongs to the class of biaryl-type axial chiral compounds, is extensively used in asymmetric synthesis. Examples of axial chiral compounds are given in Figure 1-5. [Pg.13]

Puchot, C. SamueL O. Dunach, E. Zhao, S. Agami, C. Kagan, H. B. Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions, J. Am. Chem. Soc. 1986,108, 2353-2357. [Pg.441]

Asymmetric synthesis is a method for direct synthesis of optically active amino acids and finding efficient catalysts is a great target for researchers. Many exceUent reviews have been pubHshed (72). Asymmetric syntheses are classified as either enantioselective or diastereoselective reactions. Asymmetric hydrogenation has been appHed for practical manufacturing of l-DOPA and t-phenylalanine, but conventional methods have not been exceeded because of the short life of catalysts. An example of an enantio selective reaction, asymmetric hydrogenation of a-acetamidoacryHc acid derivatives, eg, Z-2-acetamidocinnamic acid [55065-02-6] (6), is shown below and in Table 4 (73). [Pg.279]

The primary disadvantage of the conjugate addition approach is the necessity of performing two chiral operations (resolution or asymmetric synthesis) ia order to obtain exclusively the stereochemicaHy desired end product. However, the advent of enzymatic resolutions and stereoselective reduciag agents has resulted ia new methods to efficiently produce chiral enones and CO-chain synthons, respectively (see Enzymes, industrial Enzymes in ORGANIC synthesis). Eor example, treatment of the racemic hydroxy enone (70) with commercially available porciae pancreatic Hpase (PPL) ia vinyl acetate gave a separable mixture of (5)-hydroxyenone (71) and (R)-acetate (72) with enantiomeric excess (ee) of 90% or better (204). [Pg.162]

In addition, NaOMe, and NaNH2, have also been employed. Applieation of phase-transfer conditions with tetra-n-butylammonium iodide showed marked improvement for the epoxide formation. Furthermore, many complex substituted sulfur ylides have been synthesized and utilized. For instance, stabilized ylide 20 was prepared and treated with a-D-a/lo-pyranoside 19 to furnish a-D-cyclopropanyl-pyranoside 21. Other examples of substituted sulfur ylides include 22-25, among which aminosulfoxonium ylide 25, sometimes known as Johnson s ylide, belongs to another category. The aminosulfoxonium ylides possess the configurational stability and thermal stability not enjoyed by the sulfonium and sulfoxonium ylides, thereby are more suitable for asymmetric synthesis. [Pg.4]

Darzens reaction can be used to efficiently complete the stereoselective synthesis of a"-substituted epoxy ketones. As an example, Enders and Hett reported a technique for the asymmetric synthesis of a"-silylated a,P-epoxy ketones. Thus, optically active a -silyl a-bromoketone 38 was treated with LDA followed by the addition of benzaldehyde to give a"-silyl epoxyketone 40 in 66% yield with good... [Pg.19]

Chiral oxazoline-based synthetic methods have been employed in the asymmetric synthesis of a large number of natural products. A few representative examples of these applications are shown below. [Pg.244]

Amino acid separations represent another specific application of the technology. Amino acids are important synthesis precursors - in particular for pharmaceuticals -such as, for example, D-phenylglycine or D-parahydroxyphenylglycine in the preparation of semisynthetic penicillins. They are also used for other chiral fine chemicals and for incorporation into modified biologically active peptides. Since the unnatural amino acids cannot be obtained by fermentation or from natural sources, they must be prepared by conventional synthesis followed by racemate resolution, by asymmetric synthesis, or by biotransformation of chiral or prochiral precursors. Thus, amino acids represent an important class of compounds that can benefit from more efficient separations technology. [Pg.217]

An aza-Darzens reaction, involving the addition of chloromethylphosphonate anions to enantiopure N-sulfinimines, has also been developed by Davis and others for the asymmetric synthesis of aziridine-2-phosphonates [81-84], As an example, treatment of the lithium anion generated from dimethyl chloromethylphos-phonate (93 Scheme 3.30) with N-sulfmimine (Ss)-92 gave the a-chloro-P-amino phosphonate 94, which could be isolated in 51% yield. Cyclization of 94 with n-BuLi gave cis-N-sulfmylaziridine-2-phosphonate 95 in 82% yield [81],... [Pg.85]

One of the first examples of this type of reaction, using a chiral alcohol as an auxiliary, was the asymmetric synthesis of 2-hydroxy-2-phenylpropanoic acid (atrolactic acid, 3, R1 =C6H5 R3 = CH3) by diastereoselective addition of methyl magnesium iodide to the men-thyl ester of phcnylglyoxylie acid4,5 (Table 22). [Pg.99]

It is interesting to speculate that asymmetric induction may be the consequence of the exo anomeric effect, a stereoelectronic effect that favors the conformation 5 that places the aglycone O-C bond antiperiplanar to the pyran C(1) —C(2) bond7fi. Related asymmetric induction has also been observed in aldehyde addition reactions of the related, but racemic, pinacol (Z)-y-(tetrahydropyranyloxy)allylboronate49. As indicated in the examples above, however, the level of diastereoselectivity is modest and the only application in asymmetric synthesis is Wuts exo-brevicomin synthesis75. [Pg.296]

Another example of reagent-induced asymmetric synthesis is the enantioselective preparation of phosphoramides 6 by addition of dialkylzine reagents to A-diphenylphosphinoylimincs 4 in the presence of the enantiomerically pure 1,2-amino alcohols 5a or 5 b (diethylzinc does not add to A-silyl- or A-phenylimines)12. Phosphoramides 6 (crystalline solids) are obtained in moderate to good yield and good enantioselectivity. The latter can be enhanced by recrystallization. Acidic hydrolysis with dilute 3 M hydrochloric acid/tetrahydrofuran provides the corresponding amines 7 without any racemization. [Pg.701]

Active methylene compounds may be sulfinylated by reaction of their enolate anions with sulfinate ester7-1 This reaction has been investigated much in recent years and the compounds resulting from it have been of considerable use in asymmetric synthesis (see the chapter by Posner). Examples of the sulfinylation are given in the following paragraphs. [Pg.67]

The Rh2(DOSP)4 catalysts (6b) of Davies have proven to be remarkably effective for highly enantioselective cydopropanation reactions of aryl- and vinyl-diazoacetates [2]. The discovery that enantiocontrol could be enhanced when reactions were performed in pentane [35] added advantages that could be attributed to the solvent-directed orientation of chiral attachments of the ligand carboxylates [59]. In addition to the synthesis of (+)-sertraline (1) [6], the uses of this methodology have been extended to the construction of cyclopropane amino acids (Eq. 3) [35], the synthesis of tricyclic systems such as 22 (Eq. 4) [60], and, as an example of tandem cyclopropanation-Cope rearrangement, an efficient asymmetric synthesis of epi-tremulane 23 (Eq. 5) [61]. [Pg.211]

Figure 10.21 Aldolase-catalyzed asymmetric synthesis of uncommon L-configured sugars (a), and selected examples of carbohydrate-related product structures that are accessible by enzymatic aldolization (b). Figure 10.21 Aldolase-catalyzed asymmetric synthesis of uncommon L-configured sugars (a), and selected examples of carbohydrate-related product structures that are accessible by enzymatic aldolization (b).
Analogous results were obtained for enol ether bromination. The reaction of ring-substituted a-methoxy-styrenes (ref. 12) and ethoxyvinylethers (ref. 10), for example, leads to solvent-incorporated products in which only methanol attacks the carbon atom bearing the ether substituent. A nice application of these high regio-and chemoselectivities is found in the synthesis of optically active 2-alkylalkanoic acids (ref. 13). The key step of this asymmetric synthesis is the regioselective and chemoselective bromination of the enol ether 4 in which the chiral inductor is tartaric acid, one of the alcohol functions of which acts as an internal nucleophile (eqn. 2). [Pg.104]

It is often possible to convert an achiral compound to a chiral compound by (1) addition of a chiral group (2) running an asymmetric synthesis, and (3) cleavage of the original chiral group. An example is conversion of the achiral 2-pentanone to the chiral 4-methyl-3-heptanone (50). In this case, >99% of the product was the (5) enantiomer. Compound 49 is called a chiral auxiliary because it is used to induce asymmetry and then is removed. [Pg.149]

When an optically active substrate reacts with an optically active reagent to form two new chiral centers, it is possible for both centers to be created in the desired sense. This type of process is called double asymmetric synthesis (for an example, see p. 1222). [Pg.150]

Only a few other cobalt complexes of the type covered in this review (and therefore excluding, for example, the cobalt carbonyls) have been reported to act as catalysts for homogeneous hydrogenation. The complex Co(DMG)2 will catalyze the hydrogenation of benzil (PhCOCOPh) to benzoin (PhCHOHCOPh). When this reaction is carried out in the presence of quinine, the product shows optical activity. The degree of optical purity varies with the nature of the solvent and reaches a maximum of 61.5% in benzene. It was concluded that asymmetric synthesis occurred via the formation of an organocobalt complex in which quinine was coordinated in the trans position (133). Both Co(DMG)2 and cobalamin-cobalt(II) in methanol will catalyze the following reductive methylations ... [Pg.437]

The asymmetric synthesis of unsymmetrical vicinal diamines by samarium diiodide induced reductive coupling of nitrones derived from aUphatic aldehydes with optically pure N-tert-butanesulfinyl aromatic imines has been recently reported [41]. For example, the reaction between nitrone 55 and... [Pg.14]

The asymmetric synthesis of 2,3-diamino acids can be accomplished by the addition of chiral enolates to prochiral imines. For example, reaction of morpholine-2-one 103, derived from (S)-phenylglycinol, with N-benzyl ben-zaldimine in the presence of pyridine and para-toluenesulfonic acid at high... [Pg.20]

There are very few examples of asymmetric synthesis using optically pure ions as chiral-inducing agents for the control of the configuration at the metal center. Chiral anions for such an apphcation have recently been reviewed by Lacour [19]. For example, the chiral enantiomerically pure Trisphat anion was successfully used for the stereoselective synthesis of tris-diimine-Fe(ll) complex, made configurationally stable because of the presence of a tetradentate bis(l,10-phenanthroline) ligand (Fig. 9) [29]. Excellent diastereoselectivity (>20 1) was demonstrated as a consequence of the preferred homochiral association of the anion and the iron(ll) complex and evidence for a thermodynamic control of the selectivity was obtained. The two diastereoisomers can be efficiently separated by ion-pair chromatography on silica gel plates with excellent yields. [Pg.281]


See other pages where Asymmetric synthesis examples is mentioned: [Pg.42]    [Pg.288]    [Pg.337]    [Pg.42]    [Pg.288]    [Pg.337]    [Pg.126]    [Pg.397]    [Pg.10]    [Pg.240]    [Pg.106]    [Pg.357]    [Pg.595]    [Pg.79]    [Pg.257]    [Pg.168]    [Pg.335]    [Pg.68]    [Pg.73]    [Pg.89]    [Pg.311]    [Pg.46]    [Pg.17]    [Pg.161]    [Pg.188]    [Pg.233]    [Pg.274]    [Pg.67]    [Pg.68]   
See also in sourсe #XX -- [ Pg.82 ]

See also in sourсe #XX -- [ Pg.634 , Pg.636 ]




SEARCH



Synthesis examples

© 2024 chempedia.info