Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric platinum

The catalytic activity of platinum complexes toward allylic alkylation has been investigated without any success. In 1999, Williams and his co-workers developed for the first time the asymmetric platinum-catalyzed... [Pg.103]

Styrene, a-ethyl-asymmetric hydroformylation catalysts, platinum complexes, 6, 266 asymmetric hydrogenation catalysts, rhodium complexes, 6, 250 Styrene, a-methyl-asymmetric carbonylation catalysis by palladium complexes, 6, 293 carbonylation... [Pg.226]

Very low asymmetric induction (e.e. 0.3-2.5%) was noted when unsymmetrical sulphides were electrochemically oxidized on an anode modified by treatment with (— )camphoric anhydride or (S)-phenylalanine methyl ester299. Much better results were obtained with the poly(L-valine) coated platinum electrodes300. For example, t-butyl phenyl sulphide was converted to the corresponding sulphoxide with e.e. as high as 93%, when electrode coated with polypyrrole and poly(L-valine) was used. [Pg.292]

Considerably less is known about the chemistry of palladium and platinum 1,1-dithio complexes. Of late, there has been only one report that dealt with the synthesis of a large number of palladium dithiocar-bamates 392). Twenty-five yellow palladium dithiocarbamate complexes were obtained by reaction of PdCla with NaR2dtc in methanol solution. Several other reports have appeared in which a few dithiocarbamate complexes of palladium were synthesized. Thus, the novel [Pd (OH)2dtc 2], which is soluble in water, was isolated 393). The synthesis of optically active palladium(II) complexes of AT-alkyl-a-phen-ethyldithiocarbamates, similar to (XXIV), via the reaction between the optically active amine, CS2, and PdCl2, has been described. From ORD and CD spectra, it has been established that the vicinal contribution of a remote, asymmetric carbon center could give rise to optical activity of the d—d transitions of palladium 394). Carbon disulfide has been shown to insert into the Pt-F bond of [PtF(PPh3)3]HF2, and X-ray studies indicated the structure (XXIX). [Pg.261]

The coordination of ligands at the surface of metal nanoparticles has to influence the reactivity of these particles. However, only a few examples of asymmetric heterogeneous catalysis have been reported, the most popular ones using a platinum cinchonidine system [65,66]. In order to demonstrate the directing effect of asymmetric ligands, we have studied their coordination on ruthenium, palladium, and platinum nanoparticles and the influence of their presence on selected catalytic transformations. [Pg.248]

Scheme 5-13 Platinum(Me-Duphos)-catalyzed asymmetric hydrophosphination... Scheme 5-13 Platinum(Me-Duphos)-catalyzed asymmetric hydrophosphination...
Platinum complexes with chiral phosphorus ligands have been extensively used in asymmetric hydroformylation. In most cases, styrene has been used as the substrate to evaluate the efficiency of the catalyst systems. In addition, styrere was of interest as a model intermediate in the synthesis of arylpropionic acids, a family of anti-inflammatory drugs.308,309 Until 1993 the best enantio-selectivities in asymmetric hydroformylation were provided by platinum complexes, although the activities and regioselectivities were, in many cases, far from the obtained for rhodium catalysts. A report on asymmetric carbonylation was published in 1993.310 Two reviews dedicated to asymmetric hydroformylation, which appeared in 1995, include the most important studies and results on platinum-catalogued asymmetric hydroformylation.80,81 A report appeared in 1999 about hydrocarbonylation of carbon-carbon double bonds catalyzed by Ptn complexes, including a proposal for a mechanism for this process.311... [Pg.166]

The cA-PtCl2(diphosphine)/SnCl2 constitutes the system mostly used in catalyzed hydroformylation of alkenes and many diphosphines have been tested. In the 1980s, Stille and co-workers reported on the preparation of platinum complexes with chiral diphosphines related to BPPM (82) and (83) and their activity in asymmetric hydroformylation of a variety of prochiral alkenes.312-314 Although the branched/normal ratios were low (0.5), ees in the range 70-80% were achieved in the hydroformylation of styrene and related substrates. When the hydroformylation of styrene, 2-ethenyl-6-methoxynaphthalene, and vinyl acetate with [(-)-BPPM]PtCl2-SnCl2 were carried out in the presence of triethyl orthoformate, enantiomerically pure acetals were obtained. [Pg.166]

Platinum(II) complexes with diphosphines based on DIOP (85),315-321 CHIRAPHOS (86),316,320 and bdpp (87)322-325 backbones have been prepared to be used, in the presence of SnCl2, as catalyst precursors in asymmetric hydroformylation of styrene and other alkenes. [Pg.166]

Chiral bis-(binaphthophosphole) (bis(BNP)) ligands have been used in the asymmetric hydroformylation of styrene. In solution, the free diphospholes display fluxional behavior. Consistent with their structure, the reaction of the bis(BNP) compounds with platinum(II) derivatives gives either cis chelate mononuclear complexes or trans phosphorus-bridged polynuclear derivatives. Coordination to platinum enhances the conformational stability of bis(BNP)s and diastereomeric complexes can be detected in solution. In the presence of SnCl2, the platinum complexes give rise to catalysts that exhibit remarkable activity in the hydroformylation of styrene. Under optimum conditions, reaction takes place with high branched selectivity (80-85%) and moderate enantio-selectivity (up to 45% ee). [Pg.171]

Most of the reports on Rh-catalyzed asymmetric hydroformylation are concerned with asymmetric hydroformylation of vinyl aromatics, which are model substrates of interest to the pharmaceutical industry. In 1993 and 1995, reports were published describing the state of the art in hydroformylation with both rhodium and platinum systems.80,81 310 Two reports appeared in 1999 and 2000 on carbonylation and rhodium asymmetric hydroformylation respectively.311,345... [Pg.171]

Platinum(II) complexes such as [PtCl2(PhMePR)]2 (R = benzyl or propyl) have been used for asymmetric reduction of phenylketones to alcohols with up to 19% ee via the consecutive hydrosilylation-hydrolysis process (Section III,A,4) (2//, 307). A nickel(II) complex with the ben-zylphosphine, and palladium(II) phosphine complexes did not catalyze the hydrosilylation (211). [Pg.357]

E. Asymmetric Hydrosilations with Chiral Platinum Complexes. 427... [Pg.407]

The recent discovery that a chiral phosphine ligand in a platinum(II) complex can give rise to a catalytic asymmetric hydrosilation of prochiral olefins seems to prove that a phosphine ligand can be included in the coordination sphere of platinum in an active catalytic species, but that when a phosphine ligand is so included, the activity of the species is reduced by several orders of magnitude. [Pg.427]


See other pages where Asymmetric platinum is mentioned: [Pg.685]    [Pg.685]    [Pg.629]    [Pg.184]    [Pg.171]    [Pg.95]    [Pg.123]    [Pg.151]    [Pg.248]    [Pg.75]    [Pg.76]    [Pg.150]    [Pg.243]    [Pg.83]    [Pg.572]    [Pg.709]    [Pg.712]    [Pg.715]    [Pg.141]    [Pg.149]    [Pg.166]    [Pg.167]    [Pg.167]    [Pg.168]    [Pg.169]    [Pg.169]    [Pg.283]    [Pg.68]    [Pg.156]    [Pg.40]    [Pg.617]    [Pg.427]   
See also in sourсe #XX -- [ Pg.75 ]

See also in sourсe #XX -- [ Pg.75 ]




SEARCH



Asymmetric hydroformylation, platinum catalysts

Platinum asymmetric sulfoxidation

Platinum complexes asymmetric hydroformylation

Platinum, asymmetric hydrogenations

Platinum-Catalyzed Asymmetric Hydrophosphination

© 2024 chempedia.info