Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric hydrolysis intramolecular

The overall process for this enzymatic resolution is compared with the conventional chemical process in Fig. 14. The enzymatic process can skip several tedious steps which are necessary in chemical resolution and this is a considerable practical advantage. There have been several reports on the application of enzymatic asymmetric hydrolysis to the optical resolution of pantolactone [141, 142], In these cases, esterified substrates, such as O-acetyl or O-formyl pantolactone, and lipases were used as the starting materials and catalysts, respectively. Since the lactonase of F. oxysporum hydrolyzes the intramolecular ester bond of pantolactone, it is not necessary to modify the substrate, pantolactone. This is one of the practical advantages of this enzyme. [Pg.77]

Asymmetric cyclization using chiral ligands has been studied. After early attempts[142-144], satisfactory optical yields have been obtained. The hexahy-dropyrrolo[2,3-6]indole 176 has been constructed by the intramolecular Heck reaction and hydroaryiation[145]. The asymmetric cyclization of the enamide 174 using (S j-BINAP affords predominantly (98 2) the ( )-enoxysilane stereoisomer of the oxindole product, hydrolysis of which provides the ( l-oxindole aldehyde 175 in 84% yield and 95% ec. and total synthesis of (-)-physostig-mine (176) has been achieved[146]. [Pg.154]

Phenol, Oms-2-(2-butenyl)-asymmetric intramolecular oxidative cyclization, 6,365 Phenol, 4-cyano-hydrolysis... [Pg.192]

The intramolecular C-H insertion reaction of phenyldiazoacetates on cyclohexadiene, utilizing the catalyst Rh2(S-DOSP)4, leads to the asymmetric synthesis of diarylacetates (Scheme 8). Utilizing the phenyl di azoacetate 38 and cyclohexadiene, the C-H insertion product 39 was produced in 59% yield and 99% ee. Oxidative aromatization of 39 with DDQ followed by catalytic hydrogenation gave the diarylester 40 in 96% ee. Ester hydrolysis followed by intramolecular Friedel-Crafts gave the tetralone 31 (96% ee) and represents a formal synthesis of sertraline (5). Later studies utilized the catalyst on a pyridine functionalized highly cross-linked polystyrene resin. ... [Pg.135]

The optically active N-aminoindoline (265) has been applied to the asymmetric synthesis of a variety of a-amino acids (70JA2476, 2488). Starting from TV-benzoyl-1,2,3,4-tetrahy-droquinaldine (257), the chloro amide (258) was prepared by von Braun cleavage. Thermolysis converted (258) to the rrans-unsaturated amide (259) which was epoxidized. On base treatment the epoxide (260) underwent intramolecular nucleophilic displacement and amide hydrolysis to afford indoline (261) stereospecifically. Resolution of (261) was accomplished via the brucine salt of the N-o-carboxybenzoyl derivative (262). Alkaline hydrolysis, N-nitrosation and reduction yielded the levorotatory 1-aminoindoline (265). Reaction of... [Pg.436]

The catalytic and chiral efficiency of (S,S)-le was also appreciated in the asymmetric synthesis of isoquinoline derivatives, which are important conformationally constrained a-amino acids. Treatment of 2 with a,a -dibromo-o-xylene under liquid-liquid phase-transfer conditions in the presence of (S,S)-le showed complete consumption ofthe starting Schiffbase. Imine hydrolysis and subsequent treatment with an excess amount of NaHCOs facilitated intramolecular ring closure to give 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid tert-butyl ester 38 in 82% yield with 98% ee. A variety of l,2,3,4-tetrahydroisoquinoline-3-carboxylic acid derivatives possessing different aromatic substituents, such as 39 and 40, can be conveniently prepared in a similar manner, with excellent enantioselectivity (Scheme 5.20) [25]. [Pg.89]

The intramolecular allylboration of an aldehyde function leads selectively to cir-disubstituted cyclic ethers. It has been shown that both the reactive aldehyde and the allylboronate moiety can be initially generated in situ in a masked form and then liberated simultaneously by hydrolysis of the precursor functions <1997JA7499>. This methodology was successfully applied to the one-pot synthesis of the oxocene 82, a precursor of (-l-)-laurencin (Scheme 13). A DIBAL reduction of the Weinreb amide 80, metalation with r f-butyllithium, borylation with the pinacol borate ester, and, finally, liberation of both the aldehyde and the allylboronate function by aqueous pH 7 buffer solution generated the reactive 81, which cyclized in 38% overall yield to the oxocene 82. Only the all-cis-diastereomer is formed, which means that the cyclization proceeds under high asymmetric induction from the resident stereogenic center present in 80. [Pg.67]

This collection begins with a series of three procedures illustrating important new methods for preparation of enantiomerically pure substances via asymmetric catalysis. The preparation of 3-[(1S)-1,2-DIHYDROXYETHYL]-1,5-DIHYDRO-3H-2.4-BENZODIOXEPINE describes, in detail, the use of dihydroquinidine 9-0-(9 -phenanthryl) ether as a chiral ligand in the asymmetric dihydroxylation reaction which is broadly applicable for the preparation of chiral dlols from monosubstituted olefins. The product, an acetal of (S)-glyceralcfehyde, is itself a potentially valuable synthetic intermediate. The assembly of a chiral rhodium catalyst from methyl 2-pyrrolidone 5(R)-carboxylate and its use in the intramolecular asymmetric cyclopropanation of an allyl diazoacetate is illustrated in the preparation of (1R.5S)-()-6,6-DIMETHYL-3-OXABICYCLO[3.1. OJHEXAN-2-ONE. Another important general method for asymmetric synthesis involves the desymmetrization of bifunctional meso compounds as is described for the enantioselective enzymatic hydrolysis of cis-3,5-diacetoxycyclopentene to (1R,4S)-(+)-4-HYDROXY-2-CYCLOPENTENYL ACETATE. This intermediate is especially valuable as a precursor of both antipodes (4R) (+)- and (4S)-(-)-tert-BUTYLDIMETHYLSILOXY-2-CYCLOPENTEN-1-ONE, important intermediates in the synthesis of enantiomerically pure prostanoid derivatives and other classes of natural substances, whose preparation is detailed in accompanying procedures. [Pg.294]

As will be described below, self-reproduction of chirality can be accomplished through alkylations of endocyclic as well as exocyclic enolates. It generally entails (i) production of a ring containing a temporary, auxiliary chiral center by derivatization of an optically active a-hydroxy or a-amino ester (ii) formation of an enolate by deprotonation at the original asymmetric a-carbon atom (iii) use of intramolecular chirality transfer to control the stereochemistry of alkylation of the enolate and (iv) generation of the chiral a-alkylated ester by hydrolysis. [Pg.41]

This methodology, i,e., the introduction of an intramolecular chelate effect for highly selective reaction, has been further extended to the asymmetric Michael reaction. The reaction of N-crotylephedrine with Grignard reagents, followed by acid hydrolysis, constitutes a simple procedure for obtaining highly optically pure carboxylic acids. [Pg.33]


See other pages where Asymmetric hydrolysis intramolecular is mentioned: [Pg.643]    [Pg.99]    [Pg.182]    [Pg.164]    [Pg.124]    [Pg.23]    [Pg.361]    [Pg.20]    [Pg.509]    [Pg.156]    [Pg.8]    [Pg.763]    [Pg.28]    [Pg.1331]    [Pg.164]    [Pg.69]    [Pg.69]    [Pg.368]    [Pg.369]    [Pg.168]    [Pg.519]    [Pg.481]    [Pg.55]    [Pg.7208]    [Pg.402]    [Pg.242]    [Pg.162]   
See also in sourсe #XX -- [ Pg.13 , Pg.72 ]




SEARCH



Asymmetric intramolecular

© 2024 chempedia.info