Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric bromide

Figure Bl.22.2. RAIRS data from molecular ethyl bromide adsorbed on a Pt(l 11) surface at 100 K. The two traces shown, which correspond to coverages of 20% and 100% saturation, illustrate the use of the RAIRS surface selection nde for the detemiination of adsorption geometries. Only one peak, but a different one, is observed in each case while the signal detected at low coverages is due to the asymmetric defomiation of the... Figure Bl.22.2. RAIRS data from molecular ethyl bromide adsorbed on a Pt(l 11) surface at 100 K. The two traces shown, which correspond to coverages of 20% and 100% saturation, illustrate the use of the RAIRS surface selection nde for the detemiination of adsorption geometries. Only one peak, but a different one, is observed in each case while the signal detected at low coverages is due to the asymmetric defomiation of the...
An asymmetric synthesis of estrone begins with an asymmetric Michael addition of lithium enolate (178) to the scalemic sulfoxide (179). Direct treatment of the cmde Michael adduct with y /i7-chloroperbenzoic acid to oxidize the sulfoxide to a sulfone, followed by reductive removal of the bromine affords (180, X = a and PH R = H) in over 90% yield. Similarly to the conversion of (175) to (176), base-catalyzed epimerization of (180) produces an 85% isolated yield of (181, X = /5H R = H). C8 and C14 of (181) have the same relative and absolute stereochemistry as that of the naturally occurring steroids. Methylation of (181) provides (182). A (CH2)2CuLi-induced reductive cleavage of sulfone (182) followed by stereoselective alkylation of the resultant enolate with an allyl bromide yields (183). Ozonolysis of (183) produces (184) (wherein the aldehydric oxygen is by isopropyUdene) in 68% yield. Compound (184) is the optically active form of Ziegler s intermediate (176), and is converted to (+)-estrone in 6.3% overall yield and >95% enantiomeric excess (200). [Pg.436]

Thus, the QASes of the asymmetrical stmcture with improved steric accessibility of the exchange centre show the high selectivity to double-charged cadmium bromide complex ions relative to single-charged ions. [Pg.264]

Under sonication conditions, the reaction of perfluoroalkyl bromides or iodides with zinc can be used to effect a variety of functionalization reactions [39, 40, 41, 42] (equation 30) Interestingly, the ultrasound promoted asymmetric induction with the perfluoroalkyl group on the asymmetric carbon was achieved by the reaction of perfluoroalkyl halides with optically active enamines in the presence of zinc powder and a catalytic amount of dichlorobisftc-cyclopenta-dienyl)titanium [42] (equation 31)... [Pg.677]

Since cbiral sulfur ylides racemize rapidly, they are generally prepared in situ from chiral sulfides and halides. The first example of asymmetric epoxidation was reported in 1989, using camphor-derived chiral sulfonium ylides with moderate yields and ee (< 41%) Since then, much effort has been made in tbe asymmetric epoxidation using sucb a strategy without a significant breakthrough. In one example, the reaction between benzaldehyde and benzyl bromide in the presence of one equivalent of camphor-derived sulfide 47 furnished epoxide 48 in high diastereoselectivity (trans cis = 96 4) with moderate enantioselectivity in the case of the trans isomer (56% ee). ... [Pg.6]

The asymmetric total synthesis of (-)-steganone (67) was achieved through the asymmetric Mg-mediated coupling of bromide 64 and oxazoline 65, which provided a... [Pg.244]

In mosl allylation reactions, only a catalytic amount of CuCN-2LiCl is required [41]. Use of die chiral ferrocenylamine 104 as a catalyst makes enables asymmetric allylation of diorganozinc reagents to be effected witli allylic chlorides iScbeme 2.3G) [78]. Related electropb des such as propargylic bromides [79] and unsaturated epoxides [80] also undergo Su2 -substitution reactions iScbeme 2.37). [Pg.62]

The Aggarwal group has used chiral sulfide 7, derived from camphorsulfonyl chloride, in asymmetric epoxidation [4]. Firstly, they prefonned the salt 8 from either the bromide or the alcohol, and then formed the ylide in the presence of a range of carbonyl compounds. This process proved effective for the synthesis of aryl-aryl, aryl-heteroaryl, aryl-alkyl, and aryl-vinyl epoxides (Table 1.2, Entries 1-5). [Pg.4]

There has been some investigation of auxiliary-controlled cycloadditions of azir-ines. Thus, camphor-derived azirine esters undergo cycloaddition with dienes, with poor diastereoselectivity [70]. The same azirines were also observed to react unselectively with phenylmagnesium bromide. Better selectivities were obtained when Lewis acids were used in the corresponding cycloaddition reactions of 8-phe-nylmenthyl esters of azirine 2-carboxylates (Scheme 4.48) [71]. The same report also describes the use of asymmetric Lewis acids in similar cycloadditions, but mediocre ees were observed. [Pg.139]

Asymmetric induction has been observed in reactions of e-methoxy- and t-hydroxyallyl-stannanes and aldehydes promoted by tin(IV) bromide 25. [Pg.378]

Optically active Art-butyl 2-(4-methylphenylsulfinyl)propanoate only reacted with aldehydes in the presence of e//-butylmagnesium bromide as a base36. The asymmetric induction for the formation of the hydroxylic center was higher in the case of aliphatic aldehydes (75-80%) than in the case of benzaldehyde (33%). The diastereoselectivity regarding the tertiary center to sulfur was not determined. [Pg.660]

The asymmetric synthesis of amino acids via the addition of allyl and 2,3-dimethyl-2-bulenyl organometallics to ( — )-8-phenylmenthyl A-methoxyiminoacetate (14) was examined12. The results show that both allyl- and 2,3-dimethyl-2-butenylzinc bromide provide good stercocontrol. [Pg.754]

This 1,2-asymmetric induction has been attributed to stcric and stcrcoclectronic factors. Similarly, the cuprate additions to 4-alkylcyclopentenones l7 -19, and 4-alkylcyclohexcnones16 b-18 proceeded with very high trans diastereoselection. The copper iodide catalyzed addition of propylmagnesium bromide to 4-methyl-2-cyclohexenone gave a trans/cis ratio of 80 20, whereas the addition to 5-methyl-2-cyclohexenone produced a transjcis ratio of 93 72 3-Silyloxy system 3 gave the trans-adduct 4 on treatment with butylcopper-boron trifluoride reagent20. [Pg.899]

Substantially high diastereoselectivity was accomplished by the conjugate addition of Grignard reagents to the amide 1 derived from 1-ephedrine32. The reagent attacked from the Re-face of the double bond, as shown in 2, via a chelated intermediate. Low asymmetric induction was observed when butyllithium was used instead of butylmagnesium bromide. [Pg.905]

By studying the NMR spectra of the products, Jensen and co-workers were able to establish that the alkylation of (the presumed) [Co (DMG)2py] in methanol by cyclohexene oxide and by various substituted cyclohexyl bromides and tosylates occurred primarily with inversion of configuration at carbon i.e., by an 8 2 mechanism. A small amount of a second isomer, which must have been formed by another minor pathway, was observed in one case (95). Both the alkylation of [Co (DMG)2py] by asymmetric epoxides 129, 142) and the reduction of epoxides to alcohols by cobalt cyanide complexes 105, 103) show preferential formation of one isomer. In addition, the ratio of ketone to alcohol obtained in the reaction of epoxides with [Co(CN)5H] increases with pH and this has been ascribed to differing reactions with the hydride (reduction to alcohol) and Co(I) (isomerization to ketone) 103) (see also Section VII,C). [Pg.353]

The facile arylation of aldehydes with arylboronic acid has prompted the exploration of asymmetric versions of this reaction. However, this field has been scarcely explored and only few examples have been reported in the literature, with moderate results. The first diastereoselective example was described by Ftirstner and coworkers. By reacting the Gamer aldehyde 15 with phenylboronic acid under their set of experimental conditions (i.e. RhClj-SH O, IPr HCl) (Scheme 7.4) [21], the secondary alcohol was obtained in higher selectivity than that observed in the addition of phenylmagnesium bromide reported by Joullie (de = 94% versus 66%), with the anti isomer as the major compound [29]. [Pg.196]

Chiral PTC has been used effectively for making intermediates for drugs. Dolling and coworkers have used 8-R, 9-5, N-(p-trifluoromethylbenzyl) cinchonium bromide to carry out an important asymmetric alkylation, giving 95% ee (Starks, 1987). Nucleophilic epoxidations of enones, Darzens reaction, Michael additions, etc. are some examples of reactions rendered asymmetric through chiral PTCs (Nelson, 1999). [Pg.147]

The synthesis shown in Scheme 13.66 starts with the Sharpless asymmetric epoxidation product of geraniol. The epoxide was opened with inversion of configuration by NaBHjCN-BFj. The double bond was cleaved by ozonolysis and converted to the corresponding primary bromide. The terminal alkyne was introduced by alkylation of... [Pg.1228]

The asymmetric reduction of the benzoxathiin is very appealing because of its simplicity (Scheme 5.3). It was envisioned that intermediate 16 could be prepared from thiol-phenol 7 and bro moke tone 17. Scheme 5.8 summarized the synthesis for 16. The l,3-benzoxathiol-2-one 35 was prepared from 1,4-benzoquinone and thiourea following a literature procedure with minor modifications. Benzylation of 35 with benzyl bromide in the presence of KI gave benzyl ether 36 as a crystalline solid. It was observed that the benzylation gave better results when the reaction was run under anaerobic conditions. Hydrolysis of thiocarbonate 36 gave free thiophenol 7 which was used directly in the next reaction. [Pg.150]

The new method for asymmetric arylation was applicable to a host of aryl halides, to provide a diverse array of 2-arylpyrrolidines in good yield and 92% ee, regardless of the nature of the aryl bromide component. This sequence offers a number of advantages over existing methods, and represents the most convenient and practical synthesis of enantiopure 2-aryl pyrrolidines and 2,5-diarylpyrrolidines. [Pg.237]


See other pages where Asymmetric bromide is mentioned: [Pg.167]    [Pg.393]    [Pg.167]    [Pg.393]    [Pg.67]    [Pg.215]    [Pg.29]    [Pg.132]    [Pg.282]    [Pg.316]    [Pg.75]    [Pg.172]    [Pg.431]    [Pg.461]    [Pg.490]    [Pg.702]    [Pg.42]    [Pg.247]    [Pg.131]    [Pg.741]    [Pg.903]    [Pg.762]    [Pg.67]    [Pg.81]    [Pg.324]    [Pg.326]    [Pg.362]    [Pg.280]    [Pg.185]    [Pg.491]    [Pg.234]    [Pg.237]   
See also in sourсe #XX -- [ Pg.11 , Pg.283 ]




SEARCH



Asymmetric cross-coupling bromide

Substituted benzyl bromides asymmetric alkylation

© 2024 chempedia.info