Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asymmetric adsorption on minerals

Chapter 1 considers the possible relationships of earthly clays and other minerals to the origin of chirality in organic molecules. Attempts to establish experimental evidence of asymmetric adsorption on clays were unsuccessfiil, but die search for chirality did find naturally occurring enantiomorphic crystals like quartz. Asymmetric adsorption of organic molecules on quartz crystals such as separation of racemic mixtures, like Co or Cr complexes, alcohols and other compounds, allowed for the conclusion that quartz crystals can serve as possible sources of chirality but not of homochirality. This latter conclusion results fi om the finding that all studied locations of quartz crystals contain equal amounts of d- and /-forms. The preparations of synthetic adsorbents such as imprinting silica gels are also considered. More than 130 references are analyzed. [Pg.2]

Another hypothesis on homochirality involves interaction of biomolecules with minerals, either at rock surfaces or at the sea bottom thus, adsorption processes of biomolecules at chiral mineral surfaces have been studied. Klabunovskii and Thiemann (2000) used a large selection of analytical data, provided by other authors, to study whether natural, optically active quartz could have played a role in the emergence of optical activity on the primeval Earth. Some researchers consider it possible that enantioselective adsorption by one of the quartz species (L or D) could have led to the homochirality of biomolecules. Asymmetric adsorption at enantiomor-phic quartz crystals has been detected L-quartz preferentially adsorbs L-alanine. Asymmetrical hydrogenation using d- or L-quartz as active catalysts is also possible. However, if the information in a large number of publications is averaged out, as Klabunovskii and Thiemann could show, there is no clear preference in nature for one of the two enantiomorphic quartz structures. It is possible that rhomobohedral... [Pg.251]


See other pages where Asymmetric adsorption on minerals is mentioned: [Pg.2]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.30]    [Pg.2]    [Pg.4]    [Pg.6]    [Pg.8]    [Pg.10]    [Pg.12]    [Pg.14]    [Pg.16]    [Pg.18]    [Pg.20]    [Pg.22]    [Pg.24]    [Pg.30]    [Pg.4]    [Pg.15]    [Pg.105]    [Pg.731]    [Pg.370]    [Pg.312]   


SEARCH



Asymmetric adsorption

Minerals asymmetric adsorption

© 2024 chempedia.info