Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Asteroids planets

Kasting, J.F. 1990. Bolide impacts and die oxidation state of carbon in the Earth s early atmosphere. Origins Life 20 199-231. See also Schaefer, L., and Fegley Jr., B., 2007, Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites, Icarus 186.2 462-483. [Pg.83]

Metzler K., Bobe K. D., Pabne H., Spettel B., and Stoffler D. (1995) Thermal and impact metamorphism on the HED parent asteroid. Planet. Space Set 43, 499-525. [Pg.322]

There is also the promise of finding large amounts of deep methane formed not from biomass but by some abiological processes from carbonates or even carbides formed from carbon-containing asteroids that hit the earth over the ages under the harsh prebiological conditions of our planet. [Pg.210]

Our solar system consists of the Sun, the planets and their moon satellites, asteroids (small planets), comets, and meteorites. The planets are generally divided into two categories Earth-like (terrestrial) planets—Mercury, Venus, Earth, and Mars and Giant planets—Jupiter, Saturn, Uranus, and Neptune. Little is known about Pluto, the most remote planet from Earth. [Pg.444]

Water and carbon play critical roles in many of the Earth s chemical and physical cycles and yet their origin on the Earth is somewhat mysterious. Carbon and water could easily form solid compounds in the outer regions of the solar nebula, and accordingly the outer planets and many of their satellites contain abundant water and carbon. The type I carbonaceous chondrites, meteorites that presumably formed in the asteroid belt between the terrestrial and outer planets, contain up to 5% (m/m) carbon and up to 20% (m/m) water of hydration. Comets may contain up to 50% water ice and 25% carbon. The terrestrial planets are comparatively depleted in carbon and water by orders of magnitude. The concentration of water for the whole Earth is less that 0.1 wt% and carbon is less than 500 ppm. Actually, it is remarkable that the Earth contains any of these compounds at all. As an example of how depleted in carbon and water the Earth could have been, consider the moon, where indigenous carbon and water are undetectable. Looking at Fig. 2-4 it can be seen that no water- or carbon-bearing solids should have condensed by equilibrium processes at the temperatures and pressures that probably were typical in the zone of fhe solar... [Pg.22]

After planetary accretion was complete there remained two groups of surviving planetesimals, the comets and asteroids. These populations still exist and play an important role in the Earth s history. Asteroids from the belt between Mars and Jupiter and comets from reservoirs beyond the outer planets are stochastically perturbed into Earth-crossing orbits and they have collided with Earth throughout its entire history. The impact rate for 1 km diameter bodies is approximately three per million years and impacts of 10 km size bodies occur on a... [Pg.24]

The process in which the solar system was formed was certainly extremely complex, so there is as yet no generally accepted theory to describe it. The different types of heavenly body (sun, planets, satellites, comets, asteroids) have very different characteristics which need to be explained using mechanisms which are valid for them all. [Pg.25]

Binzel et al. (1991) give an account of the origin and the development of the asteroids, while Gehrels (1996) discusses the possibility that they may pose a threat to the Earth. The giant planets, and in particular Jupiter, caused a great proportion of the asteroids to be catapulted out of the solar system these can be found in a region well outside the solar system, which is named the Oort cloud after its discoverer, Jan Hendrik Oort (1900-1992). Hie diameter of the cloud has been estimated as around 100,000 AU (astronomic units one AU equals the distance between the Earth and the sun, i.e., 150 million kilometres), and it contains up to 1012 comets. Their total mass has been estimated to be around 50 times that of the Earth (Unsold and Baschek, 2001). [Pg.27]

The second important source for the hydrosphere and the oceans are asteroids and comets. Estimating the amount of water which was brought to Earth from outer space is not easy. Until 20 years ago, it was believed that the only source of water for the hydrosphere was gas emission from volcanoes. The amount of water involved was, however, unknown (Rubey, 1964). First estimates of the enormous magnitude of the bombardment to which the Earth and the other planets were subjected caused researchers to look more closely at the comets and asteroids. New hypotheses on the possible sources of water in the hydrosphere now exist the astronomer A. H. Delsemme from the University of Toledo, Ohio, considers it likely that the primeval Earth was formed from material in a dust cloud containing anhydrous silicate. If this is correct, all the water in today s oceans must be of exogenic origin (Delsemme, 1992). [Pg.38]

One more important property of Jupiter must be mentioned the Earth owes its relatively quiet periods (in geological terms) to the huge gravitational force of the giant planet. Jupiter attracts most of the comets and asteroids orbiting in its vicinity, thus protecting the Earth from impact catastrophes ... [Pg.48]

Heavenly bodies with large masses, which can attract asteroids, large planetes-imals and comets, must be present in the vicinity of the life-sustaining suns, so that impact catastrophes can be avoided. [Pg.298]

The adjective space in the chapter title loosely means extraterrestrial and could include planetology, the study of other solid bodies in the solar system, such as Mars, Comet Halley, or asteroid Ceres. While MS is vital to all planetary exploration, these devices function much the same way as laboratory MS, except that they are remotely operated, use less power, and are considerably more expensive. But space can also have the more restricted meaning of outside the ionosphere of any planet, but inside the solar system, which will be the area discussed in this chapter. The properties and challenges of this region are very different from the lab, although the science turns out to be often the same. [Pg.253]

Except for the moon and the planet Mars, no extraterrestrial body has had pieces of its mass directly examined by scientists in an earthly laboratory. This means that there has been no laboratory sample preparation scheme performed on samples of solid matter from any of the other planets, their moons, comets, or asteroids. And yet we read repeatedly about how scientists have been able to surmise the... [Pg.23]

Describe in detail the current definition of a planet. How does it differ from the definitions of stars and asteroids If size becomes a defining characteristic of a planet, hem will that change the solar system as we know it today ... [Pg.34]

Glikson A. and Allen C. (2004) Iridium anomalies and fractionated siderophile element patterns in impact ejecta, Brockman Iron Formation, Hamersley Basin, Western Australia evidence for a major asteroid impact in simatic crustal regions of the early pro-terozoic Earth. Earth Planet. Sci. Lett. 220, 247-264. [Pg.603]

Kleine T., Munker C., Mezger K., and Palme H. (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418, 952-955. [Pg.607]

Star formation and the formation of star systems with planets around them, constantly takes place in dense interstellar clouds. The material present in these clouds is incorporated into the objects that are formed during this process. Pristine or slightly altered organic matter from the cloud from which our solar-system was formed is therefore present in the most primitive objects in the solar system comets, asteroids, and outer solar-system satellites. Pieces of asteroids (and perhaps comets) can be investigated with regards to these components through the analyses of meteorites (and eventually in samples returned from these bodies by spacecraft) in laboratories on Earth. The infall of asteroid and comet material from space may have contributed to the inventory of organic compounds on primordial Earth. [Pg.48]

In the course of investigating the production of platinum from its ores, Wollaston and Tennant found four new elements in 1803. Tennant isolated osmium and iridium Wollaston found rhodium and palladium. As was the contemporary habit, Wollaston named the latter after a newly discovered celestial body. Uranium gained its name this way after William Herschel s discovery of the planet Uranus, and palladium honoured the asteroid Pallas, found in 1802. [Pg.147]

Cosmochemistry is the study of the chemical composition of the universe and the processes that produced those compositions. This is a tall order, to be sure. Understandably, cosmochemistry focuses primarily on the objects in our own solar system, because that is where we have direct access to the most chemical information. That part of cosmochemistry encompasses the compositions of the Sun, its retinue of planets and their satellites, the almost innumerable asteroids and comets, and the smaller samples (meteorites, interplanetary dust particles or IDPs, returned lunar samples) derived from them. From their chemistry, determined by laboratory measurements of samples or by various remote-sensing techniques, cosmochemists try to unravel the processes that formed or affected them and to fix the chronology of these events. Meteorites offer a unique window on the solar nebula - the disk-shaped cocoon of gas and dust that enveloped the early Sun some 4.57 billion years ago, and from which planetesimals and planets accreted (Fig. 1.1). [Pg.1]

This isotope is particularly significant, as it is thought to have been a potent source of heating for asteroids and planets early in solar system history. A variety of other shortlived isotopes have now been confirmed in meteorites and are the basis for high-resolution chronometry of the early solar system. [Pg.13]

Water is a unique substance that plays a major role in geochemistry and cosmochemistry and is a critical component of life. The physical properties of water control the environment on the Earth s surface and have played significant roles in the history of other planets, comets, and asteroids. Most plants and animals are about 60% water by volume, and most biological reactions involve water. It is no exaggeration to say that water is the key to our existence. [Pg.47]

When the elements are ejected from the stars where they were produced, they are in the gas phase. Subsequently, they combine in various chemical compounds and most condense as solids. The nature of those compounds and their behavior in the various environments encountered on their way to becoming part of the solar system can, in principle, be determined from the basic chemical properties of the elements. Evaporation and condensation are also important in the solar system and have played a defining role in determining the properties of planets, moons, asteroids, and the meteorites derived from them, comets, dust... [Pg.48]

The interiors of planets, moons, and many asteroids either are, or have been in the past, molten. The behavior of molten silicates and metal is important in understanding how a planet or moon evolved from an undifferentiated collection of presolar materials into the differentiated object we see today. Basaltic volcanism is ubiquitous on the terrestrial planets and many asteroids. A knowledge of atomic structure and chemical bonding is necessary to understand how basaltic melts are generated and how they crystallize. Melting and crystallization are also important processes in the formation of chondrules, tiny millimeter-sized spherical obj ects that give chondritic meteorites their name. The melting, crystallization, and sublimation of ices are dominant processes in the histories of the moons of the outer planets, comets, asteroids, and probably of the Earth. [Pg.49]

When water, the universal solvent, is present on a planet, an asteroid, or in a meteorite, a wide variety of chemical reactions take place that can completely alter the mineralogy and chemistry of an object. Some meteorites show extensive evidence of aqueous alteration. To understand the conditions under which the alteration occurred, one must be able to infer the amount, composition, and temperature of the fluids from the minerals that they produced. [Pg.49]

Elements also move around within solids. This motion is typically very slow, but over time it turns a rock composed of a disequilibrium assemblage of materials produced at high and low temperatures into an assemblage where all phases are in equilibrium. Understanding the nature and extent of these solid-state processes is critical to understanding and quantifying the histories of meteorites, asteroids, comets, and planets. [Pg.49]


See other pages where Asteroids planets is mentioned: [Pg.214]    [Pg.214]    [Pg.17]    [Pg.95]    [Pg.99]    [Pg.101]    [Pg.76]    [Pg.53]    [Pg.27]    [Pg.39]    [Pg.159]    [Pg.162]    [Pg.165]    [Pg.194]    [Pg.390]    [Pg.94]    [Pg.59]    [Pg.21]    [Pg.96]    [Pg.101]    [Pg.248]    [Pg.13]    [Pg.16]    [Pg.23]    [Pg.25]    [Pg.26]   
See also in sourсe #XX -- [ Pg.139 ]




SEARCH



Asteroids

Planets

© 2024 chempedia.info