Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Double arylation

The highly regio- and diastereoselective addition of an alkyl and an arylthio group to an olefinic double bond ( carbosulfenylation ) is achieved with arenesulfenyl chlorides and alkyl-chloro-titanium(IV) species (Reetz reagent, from R2Zn/TiCU 5 1 M. T. Reetz, 1987, 1989), Use of the more bulky 2,4,6-triisopropylbenzenesulfenyl chloride improves the yield of the highly versatile alkyl aryl sulfide products. [Pg.21]

The alkenyloxirane 126 in excess reacts with aryl and alkenyl halides or triflates in the presence of sodium formate to afford the allylic alcohol 127[104], Similarly, the reaction of the alkenyloxetane 128 gives the homo-allylic alcohol 130[105]. These reactions can be explained by insertion of the double bond in the Ar—Pd bond, followed by ring opening (or /3-eliraination) to form the allylic or homoallylic alkoxypalladium 129, which is converted into the allylic 127 or homoallylic alcohol 130 by the reaction of formate. The 3-alkenamide 132 was obtained by the reaction of the 4-alkenyl-2-azetizinone 131 with aryl iodide and sodium formate [106]. [Pg.146]

The o-keto ester 513 is formed from a bulky secondary alcohol using tricy-clohexylphosphine or triarylphosphine, but the selectivity is low[367-369]. Alkenyl bromides are less reactive than aryl halides for double carbonyla-tion[367], a-Keto amides are obtained from aryl and alkenyl bromides, but a-keto esters are not obtained by their carbonylation in alcohol[370]. A mechanism for the double carbonylation was proposed[371,372],... [Pg.199]

Section 1115 The simplest alkenylbenzene is styrene (C6H5CH=CH2) An aryl group stabilizes a double bond to which it is attached Alkenylbenzenes are usu ally prepared by dehydration of benzylic alcohols or dehydrohalogena tion of benzylic halides... [Pg.465]

Electrophilic addition (Section 11 16) An aryl group stabilizes a benzylic carbocation and con trols the regioselectivity of addition to a double bond involving the benzylic carbon Markovni kov s rule is obeyed... [Pg.466]

Hydrogens that are directly attached to double bonds (vinylic protons) or to aro matic rings (aryl protons) are especially deshielded... [Pg.529]

In presence of—C=C— or of aromatic ring In presence of—C=0 bond In presence of two carbon-oxygen bonds In presence of two carbon-carbon double bonds Aryl-C=0... [Pg.311]

When aiomatics aie present, they can capture the intermediate vinyl cation to give P-aryl-a,P-unsatutated ketones (182). Thus acylation of alkyl or aryl acetylenes with acyhum salts in the presence of aromatics gives a,P-unsaturated ketones with a trisubstituted double bond. The mild reaction conditions employed do not cause direct acylation of aromatics. [Pg.563]

Ketenes are oxo compounds with cumulated carbonyl and carbon—carbon double bonds of the general stmcture R R2C—C—O, where and R2 may be any combination of hydrogen, alkyl, aryl, acyl, halogen, and many other functional groups. Ketenes with R = sometimes called aldoketenes,... [Pg.473]

Isomerism about a formal Csp —Csp double bond Isomensm about a formal (C—C C-aryl and C-acyl derivatives... [Pg.208]

Addition of pyrazole to C—X double bonds is also common. Formaldehyde gives stable adducts (260) and (261) (69BSF2064), but in the addition to ketones, (262) is only observed at low temperatures (Section 4.04.1.3.3(i)). However, hexafluoroacetone forms a stable adduct (262 R = Cp3) that has been used as a chelating agent (Section 4.04.2.1.3(iv)). Addition of pyrazoles to aryl isocyanates affords (263) the addition is also reversible, but it requires high temperatures to dissociate the adduct (Section 4.04.1.5.1). [Pg.233]

EtSNa, DMF, reflux, 3 h, 94-98% yield.Potassium thiophenoxide has been used to cleave an aryl methyl ether without causing migration of a double bond. odium benzylselenide (PhCH2SeNa) and sodium thiocre-solate (p-CH3C6H4SNa) cleave a dimethoxyaryl compound regioselec-tively, reportedly as a result of steric factors in the former case and electronic factors in the latter case. ... [Pg.146]

This synthesis is only one example of a wide range of reactions which involve aryl (or alkyl) radical addition to electron-deficient double bonds resulting in reduction.The corresponding oxidative reaction using aryl radicals is the well known Meerwein reaction, which uses copper(II) salts. [Pg.69]

Other limitations of the reaction are related to the regioselectivity of the aryl radical addition to double bond, which is mainly determined by steric and radical delocalization effects. Thus, methyl vinyl ketone gives the best results, and lower yields are observed when bulky substituents are present in the e-position of the alkene. However, the method represents complete positional selectivity because only the g-adduct radicals give reductive arylation products whereas the a-adduct radicals add to diazonium salts, because of the different nucleophilic character of the alkyl radical adduct. ... [Pg.70]

A significant modification in the stereochemistry is observed when the double bond is conjugated with a group that can stabilize a carbocation intermediate. Most of the specific cases involve an aryl substituent. Examples of alkenes that give primarily syn addition are Z- and -l-phenylpropene, Z- and - -<-butylstyrene, l-phenyl-4-/-butylcyclohex-ene, and indene. The mechanism proposed for these additions features an ion pair as the key intermediate. Because of the greater stability of the carbocations in these molecules, concerted attack by halide ion is not required for complete carbon-hydrogen bond formation. If the ion pair formed by alkene protonation collapses to product faster than reorientation takes place, the result will be syn addition, since the proton and halide ion are initially on the same side of the molecule. [Pg.355]

IV-Nitrosqanilides are an alternative source of aryl radicals. There is a close mechanistie relationship to the decomposition of azo compounds. The JV-nitrosoanilides rearrange to intermediates that have a nitrogen-nitrogen double bond. The intermediate then decomposes to generate aryl radieals. ... [Pg.674]

The dehydrogenation of 4-aryl quinolizidines is very interesting, too. The double bond of the salts is formed in the position and not in the expected position (127). In several cases, hydroxylation takes place in the dehydrogenation of 1-methylquinolizidine (115), especially of cis-and rfl/i5-l-methyldecahydroquinolines (128,129) (Scheme 5). [Pg.261]


See other pages where Double arylation is mentioned: [Pg.18]    [Pg.411]    [Pg.1032]    [Pg.1145]    [Pg.1145]    [Pg.18]    [Pg.411]    [Pg.1032]    [Pg.1145]    [Pg.1145]    [Pg.428]    [Pg.1138]    [Pg.122]    [Pg.130]    [Pg.133]    [Pg.137]    [Pg.200]    [Pg.213]    [Pg.224]    [Pg.340]    [Pg.82]    [Pg.1282]    [Pg.319]    [Pg.41]    [Pg.275]    [Pg.262]    [Pg.93]    [Pg.110]    [Pg.163]    [Pg.170]    [Pg.413]    [Pg.137]    [Pg.313]   


SEARCH



© 2024 chempedia.info