Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

3-aryl-1-alkene arene

In addition to alkenes, arenes can sometimes be used as radical acceptors in Sml2-mediated carbonyl-alkene couplings. For example, Schmalz reported extensive studies on ketyl additions to arenechromium tricarbonyl complexes 66,67 tetralin-Cr(CO)3 complex 49 underwent reductive carbonyl addition to the aromatic ring upon treatment with Sml2 to furnish the skeleton of the naturally occurring aryl glycoside pseudopterosin G (Scheme 5.37).66,67 Here, the bulky metal tricarbonyl group not only serves to control the... [Pg.94]

Topics of relevance to the content of this chapter which have been reviewed during the year include photoactive [2]rotaxanes and [2]catenanes, photochemical synthesis of macrocycles, phototransformations of phthalimido amino acids, photoaddition reactions of amines with aryl alkenes and arenes, photoreactions between arenenitriles and benzylic donors, photostability of drugs, polycyclic heterocycles from aryl- and heteroaryl-2-propenoic acids, photoreactions of pyrroles, photoamination reactions in heterocyclic synthesis, switching of chirality by light, photochromic diarylethenes for molecular photoionics and solid state bimolecular photoreactions. [Pg.239]

In 1967 the coupling reaction of olefins and benzenes to give arylated olefins was first discovered (Scheme 1). This reaction is the beginning of Pd-catalyzed alkene-arene coupling via C—H activation and it was found that Pd(OAc>2 is best at bringing about the reaction. ... [Pg.1196]

FIGURE 13 8 The induced magnetic field of the tt elec trons of (a) an alkene and (b) an arene reinforces the applied field in the regions where vinyl and aryl protons are located... [Pg.529]

The closely related N- arylazoaziridine system (278) decomposes in refluxing benzene to give aryl azides and alkenes, again stereospecifically (70T3245). However, biaryls, arenes and other products typical of homolytic processes are also formed in a competing reaction, although this pathway can be suppressed by the use of a polar solvent and electron withdrawing aryl substituents. [Pg.75]

This method ensures the deposition of very reactive metal nanoparticles that require no activation steps before use. We shall review here the following examples of catalytic reactions that are of interest in line chemical synthesis (a) the hydrogenation of substituted arenes, (b) the selective hydrogenation of a, 3-unsaturated carbonyl compounds, (c) the arylation of alkenes with aryl halides (Heck reaction). The efficiency and selectivity of commercial catalysts and of differently prepared nanosized metal systems will be compared. [Pg.439]

Under Lewis-acid-catalyzed conditions, electron-rich arenes can be added to alkenes to generate Friedel-Crafts reaction products. This subject will be discussed in detail in Chapter 7, on aromatic compounds. However, it is interesting to note that direct arylation of styrene with benzene in aqueous CF3CO2H containing H2PtCl6 yielded 30-5% zram-PhCH CHR via the intermediate PhPt(H20)Cl4.157 Hydropheny-lation of olefins can be catalyzed by an Ir(III) complex.158... [Pg.75]

Similar intramolecular hydroarylations of alkynes and alkenes, which obviate the need for a halide or triflate group on the aryl ring, are now well established. Sames group screened over 60 potential catalysts and over 200 reaction conditions, and found that Ru(m) complexes and a silver salt were optimal. This process appears to tolerate steric hindrance and halogen substrates on the arene (Equations (175)—(177)). The reaction is thought to involve alkene-Ru coordination and an electrophilic pathway rather than a formal C-H activation of the arene followed by alkene hydrometallation, and advocates the necessary cautious approach to labeling this reaction as a C-H functionalization... [Pg.153]

The most fundamental reaction is the alkylation of benzene with ethene.38,38a-38c Arylation of inactivated alkenes with inactivated arenes proceeds with the aid of a binuclear Ir(m) catalyst, [Ir(/x-acac-0,0,C3)(acac-0,0)(acac-C3)]2, to afford anti-Markovnikov hydroarylation products (Equation (33)). The iridium-catalyzed reaction of benzene with ethene at 180 °G for 3 h gives ethylbenzene (TN = 455, TOF = 0.0421 s 1). The reaction of benzene with propene leads to the formation of /z-propylbenzene and isopropylbenzene in 61% and 39% selectivities (TN = 13, TOF = 0.0110s-1). The catalytic reaction of the dinuclear Ir complex is shown to proceed via the formation of a mononuclear bis-acac-0,0 phenyl-Ir(m) species.388 The interesting aspect is the lack of /3-hydride elimination from the aryliridium intermediates giving the olefinic products. The reaction of substituted arenes with olefins provides a mixture of regioisomers. For example, the reaction of toluene with ethene affords m- and />-isomers in 63% and 37% selectivity, respectively. [Pg.220]

The isomerizations have also proven to be very useful in the synthesis of a series of 1,3-diarylallenes [49-55], even tolerating other functional groups such as aryl chlorides, aryl bromides [56-58] and vinyl bromides [59]. Mixed systems with an alkene on one side and an arene on the other could also be prepared [41, 60], as well as products with two olefinic substituents [61] or bisallenes [62-64],... [Pg.1161]

The use of cyclic alkenes as substrates or the preparation of cyclic structures in the Heck reaction allows an asymmetric variation of the Heck reaction. An example of an intermolecular process is the addition of arenes to 1,2-dihydro furan using BINAP as the ligand, reported by Hayashi [23], Since the addition of palladium-aryl occurs in a syn fashion to a cyclic compound, the 13-hydride elimination cannot take place at the carbon that carries the phenyl group just added (carbon 1), and therefore it takes place at the carbon atom at the other side of palladium (carbon 3). The normal Heck products would not be chiral because an alkene is formed at the position where the aryl group is added. A side-reaction that occurs is the isomerisation of the alkene. Figure 13.20 illustrates this, omitting catalyst details and isomerisation products. [Pg.285]

Several arylations involving reactive alkenes such as norbomene or allenes have been reported. Togni and coworkers have shown that norbomene is selectively added to the ortho positions of phenols to produce a mixture of 30 and 31 in 69% and 13% yield, respectively, after 72 hours at 100°C (22) [108, 109]. 1,1-dimethylallene also reacts with aromatic carboxamides (33) to produce prenylation products (34) in the presence of cationic iridium complexes (23) [110]. In both cases, initial ortho C-H bond activation in arenes directed by coordinating groups followed by olefin insertion has been proposed. [Pg.156]


See other pages where 3-aryl-1-alkene arene is mentioned: [Pg.153]    [Pg.133]    [Pg.2271]    [Pg.2271]    [Pg.2290]    [Pg.82]    [Pg.2270]    [Pg.2270]    [Pg.2270]    [Pg.2271]    [Pg.2271]    [Pg.2299]    [Pg.222]    [Pg.1157]    [Pg.1157]    [Pg.2453]    [Pg.341]    [Pg.341]    [Pg.341]    [Pg.341]    [Pg.798]    [Pg.27]    [Pg.73]    [Pg.800]    [Pg.868]    [Pg.75]    [Pg.278]    [Pg.65]    [Pg.186]   
See also in sourсe #XX -- [ Pg.115 , Pg.366 , Pg.373 , Pg.376 ]




SEARCH



3-aryl-1-alkene arene chromium tricarbonyl

Alkenes arenes

Arenes arylation

© 2024 chempedia.info