Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Aromatics aldehydes, intramolecular

Two mechanisms have been proposed for the Knoevenagel reaction. In one, the role of the amine is to form an imine or iminium salt (378) which subsequently reacts with the enolate of the active methylene compound. Under normal circumstances elimination of the amine would give the cinnamic acid derivative (379). However, when an o-hydroxy group is present in the aromatic aldehyde intramolecular ring closure to the coumarin can occur. The timing of the various steps may be different from that shown (Scheme 118). [Pg.804]

Aziridinium ion-based click chemistry provides convenient access to pyrazolo[l,2-ajpyrazoles, active inhibitors of penicillin-binding proteins [58, 59]. Ring-opening of aziridinium ions 32 at the benzylic position with hydrazine, followed by intramolecular cyclization, gave pyrazolidin-3-ones 37 in excellent yields (Scheme 12.27). Heating of the hydrazides 37 with aromatic aldehydes at reflux in absolute... [Pg.473]

Another example of a microwave-assisted 1,3-dipolar cycloaddition using azomethine ylides and a dipolarophile was the intramolecular reaction reported for the synthesis of hexahydrochromeno[4,3-fo]pyrrolidine 105 [70]. It was the first example of a solvent-free microwave-assisted intramoleciflar 1,3-dipolar cycloaddition of azomethine ylides, obtained from aromatic aldehyde 102 and IM-substituted glycinate 103 (Scheme 36). The dipole was generated in situ (independently from the presence of a base like TEA) and reacted directly with the dipolarophile present within the same molecifle. The intramolecu-... [Pg.233]

The Horner-Wittig reaction of a-phosphoryl sulphoxides 442, which are chemically stable, results in the formation of a, -unsaturated sulphoxides 443 in high yields (equation 264). The reaction has been found to be non-stereoselective, mixtures of E and Z isomers being formed from aldehydes and unsymmetrical ketones . In the case of aromatic aldehydes this reaction can also be advantageously performed in a two-phase catalytic system even without the usual PTC catalysts (Table 24). Intramolecular Horner-Wittig reaction of a-phosphoryl-5-oxosulphoxides 444 leads to a, -unsaturated cyclic sulphoxides 445 (equation 265). Starting from optically active 0,0-... [Pg.333]

A different type of catalysis is observed using proline as a catalyst.166 Proline promotes addition of acetone to aromatic aldehydes with 65-77% enantioselectivity. It has been suggested that the carboxylic acid functions as an intramolecular proton donor and promotes reaction through an enamine intermediate. [Pg.131]

As can be seen in the scheme below, insertion reactions of aldehydes to the C-H bond of aromatic ketimines by using a rhenium catalyst provided benzo[c]furans via a mechanism involving consecutive steps of C-H bond activation, insertion of aldehyde, intramolecular nucleophilic cyclization, reductive elimination, and elimination of aniline <06JA12376>. [Pg.199]

The same group recently disclosed a related free radical process, namely an efficient one-pot sequence comprising a homolytic aromatic substitution followed by an ionic Homer-Wadsworth-Emmons olefination, for the production of a small library of a,/3-unsaturated oxindoles (Scheme 6.164) [311]. Suitable TEMPO-derived alkoxy-amine precursors were exposed to microwave irradiation in N,N-dimethylformam-ide for 2 min to generate an oxindole intermediate via a radical reaction pathway (intramolecular homolytic aromatic substitution). After the addition of potassium tert-butoxide base (1.2 equivalents) and a suitable aromatic aldehyde (10-20 equivalents), the mixture was further exposed to microwave irradiation at 180 °C for 6 min to provide the a,jS-unsaturated oxindoles in moderate to high overall yields. A number of related oxindoles were also prepared via the same one-pot radical/ionic pathway (Scheme 6.164). [Pg.213]

The photocycloaddition of aliphatic and aromatic aldehydes with 2,4,5-trimethyloxazole (131) gave bicyclic oxetanes 132 in almost quantitative yields hydrolitic cleavage led selectively to erytro a-amino-P-hydroxy methyl ketones 133 <00CC589>. The oxazolium salt 134 was converted to the azomethine ylide 136 via electrocyclic ring opening of the oxazoline 135. Intramolecular cycloaddition afforded 137 in 66% overall yield which was transformed into the aziridinomitosene derivative 138 . [Pg.226]

Reduction of unsaturated aromatic aldehydes to unsaturated hydrocarbons poses a serious problem, especially if the double bond is conjugated with the benzene ring or the carbonyl or both. In Clemmensen reduction the a,)8-unsaturated double bond is usually reduced [160], and in Wolff-Kizhner reduction a cyclopropane derivative may be formed as a result of decomposition of pyrazolines formed by intramolecular addition of the intermediate hydrazones across the double bonds [280]. The only way of converting unsaturated aromatic aldehydes to unsaturated hydrocarbons is the reaction of... [Pg.102]

She and co-workers took advantage of the acyl anion equivalent formed from the addition of an NHC to an aldehyde to catalyze the formation of benzopyranones via an intramolecular S 2 displacement (Scheme 50) [167], Various aromatic aldehydes provide alkylation products in moderate yields when the leaving group is either tosylate or iodide. No reaction was observed when phenyl or methyl was placed alpha to the leaving group. [Pg.136]

Several 2-thiazolyl- (194) and 2-benzothiazolyl- (197) hydrazones of aromatic aldehydes undergo oxidative intramolecular cyclization to form 1,2,4-triazolo-bridgehead heterocycles 195 (95SC3363) (Scheme 53) and 198 [93JCR(S)244] (Scheme 54), respectively. In the case of 194, l-acetoxy,l-(4-aryl-2-thiazolyl)-2-aroylhydrazines (196) are formed as minor products (Scheme 53). [Pg.46]

The ene reaction is strongly catalyzed by Lewis acids such as aluminum chloride and diethylaluminum chloride204 Coordination by the aluminum at the carbonyl group increases the electrophihcity of the conjugated system and allows reaction to occur below room temperature, as illustrated in Entry 6. Intramolecular ene reactions can be carried out under either thermal (Entry 3) or catalyzed (Entry 7) conditions 205 Formaldehyde in acidic solution can form allylic alcohols, as in entry 1. Other carbonyl ene reactions are carried out with Lewis acid catalysts. Aromatic aldehydes and acrolein undergo the ene reaction with activated alkenes such as enol ethers in the presence of Yb(fod)3 206 Sc(03SCF3)3 has also been used to catalyze ene reactions.207... [Pg.401]

Rhodium(II) acetate catalyzes C—H insertion, olefin addition, heteroatom-H insertion, and ylide formation of a-diazocarbonyls via a rhodium carbenoid species (144—147). Intramolecular cyclopentane formation via C—H insertion occurs with retention of stereochemistry (143). Chiral rhodium (TT) carboxamides catalyze enantioselective cyclopropanation and intramolecular C—N insertions of CC-diazoketones (148). Other reactions catalyzed by rhodium complexes include double-bond migration (140), hydrogenation of aromatic aldehydes and ketones to hydrocarbons (150), homologation of esters (151), carbonylation of formaldehyde (152) and amines (140), reductive carbonylation of dimethyl ether or methyl acetate to 1,1-diacetoxy ethane (153), decarbonylation of aldehydes (140), water gas shift reaction (69,154), C—C skeletal rearrangements (132,140), oxidation of olefins to ketones (155) and aldehydes (156), and oxidation of substituted anthracenes to anthraquinones (157). Rhodium-catalyzed hydrosilation of olefins, alkynes, carbonyls, alcohols, and imines is facile and may also be accomplished enantioselectively (140). Rhodium complexes are moderately active alkene and alkyne polymerization catalysts (140). In some cases polymer-supported versions of homogeneous rhodium catalysts have improved activity, compared to their homogenous counterparts. This is the case for the conversion of alkenes direcdy to alcohols under oxo conditions by rhodium—amine polymer catalysts... [Pg.181]

Intramolecular electron transfer in a stepwise manner from the amine substrate to die silver(III) center in a 1 2 complex, [Ag(OH)4] -iV,/V-dimcthylanilinc, has been observed.44 The kinetics of oxidation of some aliphatic, heterocyclic, and aromatic aldehydes towards bis(dihydrogentellurato)cuprate(III) and argentate(III) in alkaline medium have been studied.45 A negative salt effect was observed in the oxidation of aminoacetic acid by diperiodatocuprate(III) complex in alkaline medium.46 The oxidation of glutamic acid by thallium(III) perchlorate is catalysed by Ru(M), Os(III), and Nd(III) in a free radical mechanism and the rate is inversely dependent on [H+] concentration.47... [Pg.183]

Intramolecular acylation in suitable aromatic aldehydes occurs in the presence of IPy2BF4 and HBF4 to form benzocyclic ketones.63 For example, (58) can be formed by cyclization of (57) in 74% yield. Two plausible mechanistic pathways have been suggested. [Pg.198]

Enantioselectivities of 21-70% ee were observed in the reaction of ethyl- and methyl-vinylketone with aromatic aldehydes 22 using the chiral hydroxy-pyrrolizidine-catalyst 24 which was prepared in four steps starting from BOC-I-prolinol (Scheme 5) [32]. The enan-tioselectivity was explained by the predominant formation of intermediate 26-A, which is less sterically hindered than the isomeric intermediate 26-B. The employment of a reaction temperature of -40 °C, the use of NaBF4 as a co-catalyst, and the presence of a hydroxy group in the base (which allows the formation of intramolecular hydrogen bonds) resulted in good conversions and rates. [Pg.170]

The selective nucleophilic displacement of one ortho nitro group from 2,4,6-trinitrotoluene by esters of mercap-toacetic acid followed by oxidation leads to 2-(alkoxycarbonyl)methylsulfonyl compounds. These sulfones react with aromatic aldehydes under Knoevenagel conditions to produce thiochroman 1,1-dioxides 477, probably via a stilbene and a subsequent intramolecular Michael addition. Activating groups other than nitro are compatible with the route (Scheme 167) <2003RJ0397>. [Pg.889]


See other pages where Aromatics aldehydes, intramolecular is mentioned: [Pg.181]    [Pg.333]    [Pg.11]    [Pg.181]    [Pg.350]    [Pg.196]    [Pg.222]    [Pg.244]    [Pg.137]    [Pg.67]    [Pg.439]    [Pg.234]    [Pg.245]    [Pg.112]    [Pg.242]    [Pg.315]    [Pg.413]    [Pg.289]    [Pg.154]    [Pg.315]    [Pg.461]    [Pg.711]    [Pg.184]    [Pg.197]    [Pg.242]    [Pg.411]    [Pg.108]    [Pg.94]    [Pg.171]    [Pg.234]    [Pg.327]    [Pg.388]   


SEARCH



Aldehydes aromatic, intramolecular

Aldehydes aromatic, intramolecular

Aromatic aldehydes

Aromatics Aldehydes

© 2024 chempedia.info