Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Reduction Wolff-Kizhner

Most reactions with hydrazine are carried out with aldehydes and ketones in the presence of alkali. The reduction proper is preceded by formation of hydrazones that decompose in alkaline medium at elevated temperatures to nitrogen and compounds in which the carbonyl oxygen has been replaced by two hydrogens. The same results are obtained by alkaline-thermal decomposition of ready-made hydrazones of the carbonyl compounds. Both reactions are referred to as Wolff-Kizhner reduction [280]. [Pg.34]

Reduction of saturated aliphatic aldehydes to alkanes was carried out by refluxing with amalgamated zinc and hydrochloric acid (Clemmensen reduction) [760, 758] (p. 28) or by heating with hydrazine and potassium hydroxide (Wolff-Kizhner reduction) [280, 759] (p. 34). Heptaldehyde gave heptane in 72% yield by the first and in 54% yield by the second method. [Pg.97]

Like any aldehydes aromatic aldehydes undergo Clemmensen reduction [758, 778] and Wolff-Kizhner reduction [759, 774] and give the corresponding methyl compounds, generally in good yields. The same effect is accomplished by conversion of the aldehydes to p-toluenesulfonyl hydrazones followed by reduction with lithium aluminum hydride (p. 106). [Pg.101]

Reduction of unsaturated aromatic aldehydes to unsaturated hydrocarbons poses a serious problem, especially if the double bond is conjugated with the benzene ring or the carbonyl or both. In Clemmensen reduction the a,)8-unsaturated double bond is usually reduced [160], and in Wolff-Kizhner reduction a cyclopropane derivative may be formed as a result of decomposition of pyrazolines formed by intramolecular addition of the intermediate hydrazones across the double bonds [280]. The only way of converting unsaturated aromatic aldehydes to unsaturated hydrocarbons is the reaction of... [Pg.102]

Aldoximes yielded primary amines by catalytic hydrogenation benzaldehyde gave benzylamine in 77% yield over nickel at 100° and 100 atm [803, with lithium aluminum hydride (yields 47-79%) [809, with sodium in refluxing ethanol (yields 60-73%) [810] and with other reagents. Hydrazones of aldehydes are intermediates in the Wolff-Kizhner reduction of the aldehyde group to a methyl group (p. 97) but are hardly ever reduced to amines. [Pg.106]

For the reduction of aliphatic ketones to hydrocarbons several methods are available reduction with triethylsilane and boron trifluoride [772], Clemmensen reduction [160, 758] (p. 28), Wolff-Kizhner reduction [280, 281, 759] (p. 34), reduction of p-toluenesulfonylhydrazones with sodium borohydride [785], sodium cyanoborohydride [57i] or borane [786] (p. 134), desulfurization of dithioketals (jaeicaipioles) [799,823] (pp. 130,131) and electroreduction [824]. [Pg.108]

However, most frequently used methods for reduction of aromatic ketones to hydrocarbons are, as in the case of other ketones, Clemmensen reduction [160, 161, 758, 843, 844] Procedure 31, p. 213), Wolff-Kizhner reduction [280,281,282, 759, 774,845] Procedure 45, p. 216), or reduction of p-toluene-sulfonylhydrazones of the ketones with lithium aluminum hydride [811, 812] or with borane and benzoic acid [786]. [Pg.113]

Reduction of the carhonyl group to methylene is carried out hy Clemmensen reduction [160, 758], hy Wolff-Kizhner reduction [280, 282], or hy its modifications decomposition of hydrazones with potassium /er/-butoxide in dimethyl sulfoxide at room temperature in yields of 60-90% [845], or hy reduction ofp-toluenesulfonylhydrazones with sodium borohydride (yields 65-80%) [811] (p. 134). [Pg.118]

Reduction of a, -unsaturated ketones to unsaturated hydrocarbon is rather rare, and is almost always accompanied by a shift of the double bond. Such reductions are accomplished in good to high yields by treatment of the p-toluenesulfonylhydrazones of the unsaturated ketones with sodium borohydride [785], borane [786] or catecholborane [559], or by Wolff-Kizhner reduction or its modifications [590]. However, complete reduction to saturated hydrocarbons may also occur during Wolff-Kizhner reduction [597] as well as during Clemmensen reduction [750]. [Pg.121]

Reductions of keto esters to esters are not very frequent. Both Clemmensen and Wolff-Kizhner reductions can hardly be used. The best way is desulfurization of thioketals with Raney nickel (p. 130). Thus ethyl acetoacetate was reduced to ethyl butyrate in 70% yield, methyl benzoylformate (phenylglyoxy-late) to methyl phenylacetate in 79% yield, and other keto esters gave equally high yields (74-77%) [82J]. [Pg.162]

Additional support for this assumption has been given by the Wolff-Kizhner reduction of cyclolaudane-l,3-dione (293) (118). To prepare the latter cyclolaudan-3-one (294) was brominated to the 2a-bromo derivative, dehydrobrominated, epoxidated, and reduced. The diol... [Pg.73]


See other pages where Reduction Wolff-Kizhner is mentioned: [Pg.106]    [Pg.144]    [Pg.71]    [Pg.138]    [Pg.106]    [Pg.144]    [Pg.71]    [Pg.138]    [Pg.252]   


SEARCH



Wolff

Wolff-Kizhner reduction ketones

© 2024 chempedia.info