Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Correlation functions apparent

Figure 14. Plot of the potential of zero charge, Ea=0 (from Table 26), against the work function, Figure 14. Plot of the potential of zero charge, Ea=0 (from Table 26), against the work function, <P, of polycrystalline metals. Hg is taken as a reference metal. (1) Straight line of unit slope through the point of Hg. (2) Linear correlation gathering most sp-metals (except Ga and Zn). The two points for In and T1 include their alloys with Ga, for which the same value of work function is presumed. (A) sd-metals [the points refer to the (110) face], (3) First approximation, apparent correlation for polycrystalline d-metals.
Crude oils contain various amounts of indigenous surface-active agents that stabilize water-in-oil emulsions. Therefore crude oils may stabilize such emulsions. It has been shown that the effectiveness of a dispersant is dependent on both the dispersant type and the specific crude oil [309]. However, there is no apparent correlation between the degree of emulsion-forming tendency of the crude oil, which is a function of the indigenous surfactant content, and the effectiveness of the dispersant. In general, indigenous surfactants in crude oil reduce the effectiveness of the dispersant, but to an unpredictable level. [Pg.294]

Just as in the unrestricted Hartree-Fock variant, the Slater determinant constructed from the KS orbitals originating from a spin unrestricted exchange-correlation functional is not a spin eigenfunction. Frequently, the resulting (S2) expectation value is used as a probe for the quality of the UKS scheme, similar to what is usually done within UHF. However, we must be careful not to overstress the apparent parallelism between unrestricted Kohn-Sham and Hartree-Fock in the latter, the Slater determinant is in fact the approximate wave function used. The stronger its spin contamination, the more questionable it certainly gets. In... [Pg.70]

Use of the LYP correlation functional apparently reduces the overbinding proportional to the number of hydrogen atoms by about 1 kcal/mol per H from CH to CH4. On the contrary, for the nonhydride diatomics listed, the atomization energies increase by 4-5 kcal/ mol per atom upon substitution of VWN by the LYP functional. For species like C2H2,... [Pg.155]

To calculate free energies of solvation for several organic molecules, Fortunelli and Tomasi applied the boundary element method for the reaction field in DFT/SCRF framework173. The authors demonstrated that the DFT/SCRF results obtained with the B88 exchange functional and with either the P86 or the LYP correlation functional are significantly closer to the experimental ones than the ones steming from the HF/SCRF calculations. The authors used the same cavity parameters for the HF/SCRF and DFT/SCRF calculations, which makes it possible to attribute the apparent superiority of the DFT/SCRF results to the density functional component of the model. The boundary element method appeared to be very efficient computationally. The DFT/SCRF calculations required only a few percent more CPU time than the corresponding gas-phase SCF calculations. [Pg.114]

The value of the jump distance in the )0-relaxation of PIB found from the study of the self-motion of protons (2.7 A) is much larger than that obtained from the NSE study on the pair correlation function (0.5-0.9 A). This apparent paradox can also be reconciled by interpreting the motion in the j8-regime as a combined methyl rotation and some translation. Rotational motions aroimd an axis of internal symmetry, do not contribute to the decay of the pair correlation fimction. Therefore, the interpretation of quasi-elastic coherent scattering appears to lead to shorter length scales than those revealed from a measurement of the self-correlation function [195]. A combined motion as proposed above would be consistent with all the experimental observations so far and also with the MD simulation results [198]. [Pg.112]

The explanation for the apparent correlation between catalytic activity and electron affinity of metals cannot be as simple as that which has been advanced for the homogeneous catalysts. This is because chemisorption on metals (unlike the splitting of hydrogen by metal ions in solution ) is an exothermic process and, hence, as shown earlier, catalytic activity depends not only on a low activation energy of adsorption but also on a low heat of adsorption. The interpretation applied earlier to homogeneous catalysts can account for an inverse dependence of Ea on the work function, but does not suggest any obvious reason why Q should show a similar dependence. [Pg.331]

In the treatment of a rigid dumbbell, where the whole time-correlation functions (TCF) can be solved exactly, Stockmayer and Burchard21 disclosed the origin for the discrepancy between theory and experiments. They recognized that all measurements of the TCF can be carried out down only to a limiting minimum delay time. With common instruments, this lower limit lies at about 100 ns but the lowest time is often much higher under conditions such that the TCF should have decayed to e"2 at channel 8Q220). These experimental condition imply that only an apparent first cumulant is determined defined by... [Pg.94]

This latter expression has been used to simplify KD(t)- Note that the time dependences of the linear and angular momentum autocorrelation functions depend only on interactions between a molecule and its surroundings. In the absence of torques and forces these functions are unity for all time and their memories are zero. There is some justification then for viewing these particular memory functions as representing a molecule s temporal memory of its interactions. However, in the case of the dipolar correlation function, this interpretation is not so readily apparent. That is, both the dipolar autocorrelation function and its memory will decay in the absence of external torques. This decay is only due to the fact that there is a distribution of rotational frequencies, co, for each molecule in the gas phase. In... [Pg.83]


See other pages where Correlation functions apparent is mentioned: [Pg.367]    [Pg.367]    [Pg.885]    [Pg.103]    [Pg.304]    [Pg.281]    [Pg.181]    [Pg.246]    [Pg.537]    [Pg.108]    [Pg.141]    [Pg.160]    [Pg.239]    [Pg.19]    [Pg.207]    [Pg.132]    [Pg.167]    [Pg.150]    [Pg.204]    [Pg.126]    [Pg.130]    [Pg.36]    [Pg.274]    [Pg.54]    [Pg.125]    [Pg.302]    [Pg.199]    [Pg.260]    [Pg.779]    [Pg.177]    [Pg.135]    [Pg.155]    [Pg.156]    [Pg.270]    [Pg.45]    [Pg.84]    [Pg.104]    [Pg.91]    [Pg.125]    [Pg.144]   
See also in sourсe #XX -- [ Pg.367 ]




SEARCH



© 2024 chempedia.info