Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Anionic polymerization propagation rates

Like in anionic systems, living, cationically growing polymers facilitated kinetic studies of these polymerizations. For example, Stan Penczek, who spent one year with us, demonstrated after his return to Poland that free ions and ion pairs participate in the cationic polymerization of tetrahydrofuran and succeeded to determine the individual rate constants of these species. However, in this system still another species, not yet encountered in anionic polymerization, propagates the polymerization, namely, the covalently bonded ester. [Pg.277]

When cationic polymerizations are initiated by y radiations, propagation proceeds by means of free ions and it is then possible to evaluate the monomer polymerizability from determination of the corresponding rate constants of propagation. It can be observed that, contfary to anionic polymerizations whose rate constants of propagation of free ions are 10 times higher than those measured for ion pairs, the same ratio of rate constants is only about 10 (or even less) in cationic polymerization. Such a difference is due to the faculty of certain solvents to solvate free cations and thus reduce their intrinsic reactivity. [Pg.335]

Fig. 3. Arrhenius plots of the propagation rate constants kp of the anionic polymerization of methyl methacrylate in THF for different ion pairs including the propagation rate constant at —98 °C with cryptated sodium and of the free PMMA-anion (H. Jeuck, A. H. E. Muller, Ref. 34 )-... Fig. 3. Arrhenius plots of the propagation rate constants kp of the anionic polymerization of methyl methacrylate in THF for different ion pairs including the propagation rate constant at —98 °C with cryptated sodium and of the free PMMA-anion (H. Jeuck, A. H. E. Muller, Ref. 34 )-...
However, the mechanisms by which the initiation and propagation reactions occur are far more complex. Dimeric association of polystyryllithium is reported by Morton, al. ( ) and it is generally accepted that the reactions are first order with respect to monomer concentration. Unfortunately, the existence of associated complexes of initiator and polystyryllithium as well as possible cross association between the two species have negated the determination of the exact polymerization mechanisms (, 10, 11, 12, 13). It is this high degree of complexity which necessitates the use of empirical rate equations. One such empirical rate expression for the auto-catalytic initiation reaction for the anionic polymerization of styrene in benzene solvent as reported by Tanlak (14) is given by ... [Pg.296]

A kinetic study for the polymerization of styrene, initiated with n BuLi, was designed to explore the Trommsdorff effect on rate constants of initiation and propagation and polystyryl anion association. Initiator association, initiation rate and propagation rates are essentially independent of solution viscosity, Polystyryl anion association is dependent on media viscosity. Temperature dependency correlates as an Arrhenius relationship. Observations were restricted to viscosities less than 200 centipoise. Population density distribution analysis indicates that rate constants are also independent of degree of polymerization, which is consistent with Flory s principle of equal reactivity. [Pg.392]

Ito, K., and Yamashita, Y., Propagation and depropagation rates in the anionic polymerization of e-caprolactone cyclic oligomers, Macromolecules. Ij., 68-72, 1978. [Pg.113]

The most studied catalyst family of this type are lithium alkyls. With relatively non-bulky substituents, for example nBuLi, the polymerization of MMA is complicated by side reactions.4 0 These may be suppressed if bulkier initiators such as 1,1-diphenylhexyllithium are used,431 especially at low temperature (typically —78 °C), allowing the synthesis of block copolymers.432,433 The addition of bulky lithium alkoxides to alkyllithium initiators also retards the rate of intramolecular cyclization, thus allowing the polymerization temperature to be raised.427 LiCl has been used to similar effect, allowing monodisperse PMMA (Mw/Mn = 1.2) to be prepared at —20 °C.434 Sterically hindered lithium aluminum alkyls have been used at ambient (or higher) temperature to polymerize MMA in a controlled way.435 This process has been termed screened anionic polymerization since the bulky alkyl substituents screen the propagating terminus from side reactions. [Pg.24]

Auguste S, Edwards HGM, Johnson AF et al. (1996) Anionic polymerization of styrene and butadiene initiated by n-butyllithium in ethylbenzene determination of the propagation rate constants using Raman spectroscopy and gel permeation chromatography. Polymer 37 3665-3673... [Pg.60]

The propagation rate constant and the polymerization rate for anionic polymerization are dramatically affected by the nature of both the solvent and the counterion. Thus the data in Table 5-10 show the pronounced effect of solvent in the polymerization of styrene by sodium naphthalene (3 x 1CT3 M) at 25°C. The apparent propagation rate constant is increased by 2 and 3 orders of magnitude in tetrahydrofuran and 1,2-dimethoxyethane, respectively, compared to the rate constants in benzene and dioxane. The polymerization is much faster in the more polar solvents. That the dielectric constant is not a quantitative measure of solvating power is shown by the higher rate in 1,2-dimethoxyethane (DME) compared to tetrahydrofuran (THF). The faster rate in DME may be due to a specific solvation effect arising from the presence of two ether functions in the same molecule. [Pg.423]

The need for solvation in anionic polymerization manifests itself in some instances by other deviations from the normal reaction rate expressions. Thus the butyllithium polymerization of methyl methacrylate in toluene at — 60°C shows a second-order dependence of Rp on monomer concentration [L Abbe and Smets, 1967]. In the nonpolar toulene, monomer is involved in solvating the propagating species [Busson and Van Beylen, 1978]. When polymerization is carried out in the mixed solvent dioxane-toluene (a more polar solvent than toluene), the normal first-order dependence of Rp on [M] is observed. The lithium diethylamide, LiN(C2H5)2, polymerization of styrene at 25°C in THF-benzene similarly shows an increased order of dependence of Rp on [M] as the amount of tetrahydrofuran is decreased [Hurley and Tait, 1976]. [Pg.435]

The anionic polymerization of lactams proceeds by a mechanism analogous to the activated monomer mechanism for anionic polymerization of acrylamide (Sec. 5-7b) and some cationic polymerizations of epoxides (Sec. 7-2b-3-b). The propagating center is the cyclic amide linkage of the IV-acyllactam. Monomer does not add to the propagating chain it is the monomer anion (lactam anion), often referred to as activated monomer, which adds to the propagating chain [Szwarc, 1965, 1966]. The propagation rate depends on the concentrations of lactam anion and W-acy I lactam, both of which are determined by the concentrations of lactam and base. [Pg.575]

One of the first examples of Intramolecular Interactions In anionic polymerization was encountered In the propagation of two-ended polystyrylceslum In THF (28). Intramolecular triple ions are formed which Increase the Ionic conductance but lower the propagation rate. Reactive free anions associate with ion Pairs on the same chain to form less reactive triple Ions. [Pg.87]

Thus, in the present paper we review the available data, pertinent to the kinetics and mechanism of anionic polymerization of lactones and discuss the recent data of our own, giving eventually an access to the rate constants of propagation on macroions and macroion--pairs. [Pg.271]

In conclusion, it has been shown that use of cryptates for the anionic polymerization of heterocyclic monomers leatis to a tremendous increase of the rates of polymerization. There are two main causes to the higher reaction rates observed with cryptates. The first one is a suppression of the association between ion pairs in the non polar media, and the second one is the possibility of ion pairs dissociation into free ions in ethereal solvents like THP or THF. By this way, it has been possible to make detailed studies of the propagation reaction for propylene sulfide, ethylene oxide, and cycloslloxanes. [Pg.303]

Figure 1. Arrhenius plot of the propagation rate constants in the anionic polymerization of methyl methacrylate in THF using Na and Cs+ as the counterions (25)... Figure 1. Arrhenius plot of the propagation rate constants in the anionic polymerization of methyl methacrylate in THF using Na and Cs+ as the counterions (25)...
Polymer Preparation. Poly-para-methylstyrene (P-p-MS) was prepared by anionic polymerization in benzene at 50"C initiated by n-butyllithium (9) or in THF at 25°C initiated by sodium naphthalene (10). Polymerizations in benzene allowed preparation of more monodisperse materials than those prepared in THF since the propagation rate is slower relative to the initiation rate in the nonpolar solvent (11). Two different molecular weight materials were chlorinated (P-p-MS 1 and P-p-MS2). [Pg.362]

When a mixture of styrene and 1,3-butadiene (or isoprene) undergoes lithium-initiated anionic polymerization in hydrocarbon solution, the diene polymerizes first. It is unexpected, since styrene when polymerized alone, is more reactive than, for example, 1,3-butadiene. The explanation is based on the differences of the rates of the four possible propagation reactions the rate of the reaction of the styryl chain end with butadiene (crossover rate) is much faster than the those of the other three reactions484,485 (styryl with styrene, butadienyl with butadiene or styrene). This means that the styryl chain end reacts preferentially with butadiene. [Pg.775]


See other pages where Anionic polymerization propagation rates is mentioned: [Pg.113]    [Pg.350]    [Pg.158]    [Pg.161]    [Pg.455]    [Pg.4]    [Pg.97]    [Pg.227]    [Pg.150]    [Pg.493]    [Pg.225]    [Pg.392]    [Pg.395]    [Pg.419]    [Pg.419]    [Pg.423]    [Pg.423]    [Pg.424]    [Pg.425]    [Pg.430]    [Pg.550]    [Pg.577]    [Pg.604]    [Pg.700]    [Pg.112]    [Pg.699]    [Pg.59]    [Pg.283]    [Pg.397]    [Pg.534]    [Pg.740]    [Pg.740]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Anionic polymerization rates

Anionic propagation

Polymerization rate

Propagation, polymerization

© 2024 chempedia.info