Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Angular importance

There are significant differences between tliese two types of reactions as far as how they are treated experimentally and theoretically. Photodissociation typically involves excitation to an excited electronic state, whereas bimolecular reactions often occur on the ground-state potential energy surface for a reaction. In addition, the initial conditions are very different. In bimolecular collisions one has no control over the reactant orbital angular momentum (impact parameter), whereas m photodissociation one can start with cold molecules with total angular momentum 0. Nonetheless, many theoretical constructs and experimental methods can be applied to both types of reactions, and from the point of view of this chapter their similarities are more important than their differences. [Pg.870]

At the time the experiments were perfomied (1984), this discrepancy between theory and experiment was attributed to quantum mechanical resonances drat led to enhanced reaction probability in the FlF(u = 3) chaimel for high impact parameter collisions. Flowever, since 1984, several new potential energy surfaces using a combination of ab initio calculations and empirical corrections were developed in which the bend potential near the barrier was found to be very flat or even non-collinear [49, M], in contrast to the Muckennan V surface. In 1988, Sato [ ] showed that classical trajectory calculations on a surface with a bent transition-state geometry produced angular distributions in which the FIF(u = 3) product was peaked at 0 = 0°, while the FIF(u = 2) product was predominantly scattered into the backward hemisphere (0 > 90°), thereby qualitatively reproducing the most important features in figure A3.7.5. [Pg.878]

The interpretation of MAS experiments on nuclei with spin / > Fin non-cubic enviromnents is more complex than for / = Fiuiclei since the effect of the quadnipolar interaction is to spread the i <-> (i - 1) transition over a frequency range (2m. - 1)Vq. This usually means that for non-integer nuclei only the - transition is observed since, to first order in tire quadnipolar interaction, it is unaffected. Flowever, usually second-order effects are important and the angular dependence of the - ytransition has both P2(cos 0) andP Ccos 9) terms, only the first of which is cancelled by MAS. As a result, the line is narrowed by only a factor of 3.6, and it is necessary to spin faster than the residual linewidth Avq where... [Pg.1480]

A molecular beam scattering experiment usually involves the detection of low signal levels. Thus, one of the most important considerations is whether a sufficient flux of product molecules can be generated to allow a precise measurement of the angular and velocity distributions. The rate of fonnation of product molecules, dAVdt, can be expressed as... [Pg.2062]

For these reasons, in the MCSCF method the number of CSFs is usually kept to a small to moderate number (e.g. a few to several thousand) chosen to describe essential correlations (i.e. configuration crossings, near degeneracies, proper dissociation, etc, all of which are often tenned non-dynamicaI correlations) and important dynamical correlations (those electron-pair correlations of angular, radial, left-right, etc nature that are important when low-lying virtual orbitals are present). [Pg.2176]

The quantum numbers tliat are appropriate to describe tire vibrational levels of a quasilinear complex such as Ar-HCl are tluis tire monomer vibrational quantum number v, an intennolecular stretching quantum number n and two quantum numbers j and K to describe tire hindered rotational motion. For more rigid complexes, it becomes appropriate to replace j and K witli nonnal-mode vibrational quantum numbers, tliough tliere is an awkw ard intennediate regime in which neitlier description is satisfactory see [3] for a discussion of tire transition between tire two cases. In addition, tliere is always a quantum number J for tire total angular momentum (excluding nuclear spin). The total parity (symmetry under space-fixed inversion of all coordinates) is also a conserved quantity tliat is spectroscopically important. [Pg.2445]

The permutational symmetry of the rotational wave function is determined by the rotational angular momentum J, which is the resultant of the electronic spin S, elecbonic orbital L, and nuclear orbital N angular momenta. We will now examine the permutational symmetry of the rotational wave functions. Two important remarks should first be made. The first refers to the 7 = 0 rotational... [Pg.575]

Operators that eommute with the Hamiltonian and with one another form a partieularly important elass beeause eaeh sueh operator permits eaeh of the energy eigenstates of the system to be labelled with a eorresponding quantum number. These operators are ealled symmetry operators. As will be seen later, they inelude angular momenta (e.g., L2,Lz, S, Sz, for atoms) and point group symmetries (e.g., planes and rotations about axes). Every operator that qualifies as a symmetry operator provides a quantum number with whieh the energy levels of the system ean be labeled. [Pg.51]

Ah initio methods can yield reliable, quantitatively correct results. It is important to use basis sets with diffrise functions and high-angular-momentum polarization functions. Hyperpolarizabilities seem to be relatively insensitive to the core electron description. Good agreement has been obtained between ECP basis sets and all electron basis sets. DFT methods have not yet been used widely enough to make generalizations about their accuracy. [Pg.259]

This is an important equation that defines the behaviour of a vibrating body under different conditions of applied force or motion F y From this it can be inferred that the response or movement of object x will depend upon t) and 7 is termed the fraction of critical damping and w , the angular natural frequency of the system. With the help of these equations, the response characteristics of an object to a force can be determined. [Pg.446]

A hot gas expander is typieaiiy deseribed by a map of shaft power versus mass flowrate (Figure 7-3). Notiee that there are four parameters ehanging in this partieuiar map w, J, Pj, and Tj. Figure 7-3 is most useful when the family of eurves (whieh are for a eonstant rotational speed) reduees to a single eurve in a two-dimensional spaee. Usually, expander eharaeteristies are a very weak funetion of angular speed. However, in eases where the variations due to rotational speed are important, a third dimension is required. This dimension should be equivalent speed, Ng. [Pg.406]

Component reliability will vary as a function of the power of a dimensional variable in a stress function. Powers of dimensional variables greater than unity magnify the effect. For example, the equation for the polar moment of area for a circular shaft varies as the fourth power of the diameter. Other similar cases liable to dimensional variation effects include the radius of gyration, cross-sectional area and moment of inertia properties. Such variations affect stability, deflection, strains and angular twists as well as stresses levels (Haugen, 1980). It can be seen that variations in tolerance may be of importance for critical components which need to be designed to a high reliability (Bury, 1974). [Pg.163]


See other pages where Angular importance is mentioned: [Pg.401]    [Pg.692]    [Pg.14]    [Pg.877]    [Pg.956]    [Pg.1133]    [Pg.1324]    [Pg.1469]    [Pg.1839]    [Pg.2456]    [Pg.2805]    [Pg.400]    [Pg.255]    [Pg.161]    [Pg.492]    [Pg.630]    [Pg.236]    [Pg.153]    [Pg.437]    [Pg.200]    [Pg.272]    [Pg.321]    [Pg.334]    [Pg.445]    [Pg.414]    [Pg.417]    [Pg.454]    [Pg.417]    [Pg.97]    [Pg.328]    [Pg.2328]    [Pg.247]    [Pg.626]    [Pg.107]    [Pg.248]    [Pg.340]    [Pg.444]    [Pg.35]   
See also in sourсe #XX -- [ Pg.101 ]




SEARCH



Importance of Angular-Momentum Conservation Couette Flow

© 2024 chempedia.info