Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Optical activity and

Chirality and Optical Activity. A compound is chiral (the term dissymmetric was formerly used) if it is not superimposable on its mirror image. A chiral compound does not have a plane of symmetry. Each chiral compound possesses one (or more) of three types of chiral element, namely, a chiral center, a chiral axis, or a chiral plane. [Pg.45]

Many of the physical properties are not affected by the optical composition, with the important exception of the melting poiat of the crystalline acid, which is estimated to be 52.7—52.8°C for either optically pure isomer, whereas the reported melting poiat of the racemic mixture ranges from 17 to 33°C (6). The boiling poiat of anhydrous lactic acid has been reported by several authors it was primarily obtained duriag fractionation of lactic acid from its self-esterification product, the dimer lactoyUactic acid [26811-96-1]. The difference between the boiling poiats of racemic and optically active isomers of lactic acid is probably very small (6). The uv spectra of lactic acid and dilactide [95-96-5] which is the cycHc anhydride from two lactic acid molecules, as expected show no chromophores at wavelengths above 250 nm, and lactic acid and dilactide have extinction coefficients of 28 and 111 at 215 nm and 225 nm, respectively (9,10). The iafrared spectra of lactic acid and its derivatives have been extensively studied and a summary is available (6). [Pg.512]

Since chirality is a property of a molecule as a whole, the specific juxtaposition of two or more stereogenic centers in a molecule may result in an achiral molecule. For example, there are three stereoisomers of tartaric acid (2,3-dihydroxybutanedioic acid). Two of these are chiral and optically active but the third is not. [Pg.85]

Recendy, Darzens reaction was investigated for its synthetic applicability to the condensation of substituted cyclohexanes and optically active a-chloroesters (derived from (-)-phenylmenthol). In this report, it was found that reaction between chloroester 44 and cyclohexanone 43 provided an 84% yield with 78 22 selectivity for the axial glycidic ester 45 over equatorial glycidic ester 46 both having the R configuration at the epoxide stereocenter. [Pg.19]

Racemic and optically active a-aminophosphonic acids, derivatives of various heterocycles 97ZOR1605. [Pg.207]

Cyclopolymerization of the bis-methacrylates (10, ll)6" 6j or bis-styrene derivatives (12)64 has been used to produce heterotactic polymers and optically active atactic polymers. Cyclopolymcrization of racemic 13 by ATRP with a catalyst based on a chiral ligand (Scheme 8.12) gave preferential conversion of the (S, )-enantiomer. 66... [Pg.424]

The electronic spectra and optical activity of phenanthroline and dipyridyl metal complexes. S. F. Mason, Inorg. Chim. Acta, Rev., 1968, 2, 89-109 (84). [Pg.65]

The purpose of the present chapter is to provide an up-to-date review of methods which may be applied for the synthesis of both achiral and chiral (racemic and optically active) sulphoxides as well as their derivatives. Since the synthesis of optically active sulphoxides is based on many special procedures, it was found necessary to separate the syntheses of achiral and racemic sulphoxides from those of optically active ones. [Pg.235]

Some limitations of the subject surveyed have been necessary in order to keep the size of the chapter within the reasonable bounds. Accordingly, to make it not too long and readable, the discussion of the methods of the sulphoxide synthesis will be divided into three parts. In the first part, all the general methods of the synthesis of sulphoxides will be briefly presented. In the second one, methods for the preparation of optically active sulphoxides will be discussed. The last part will include the synthetic procedures leading to functionalized sulphoxides starting from simple dialkyl or arylalkyl sulphoxides. In this part, however, the synthesis of achiral, racemic and optically active sulphoxides will be treated together. Each section and subsection includes, where possible, some considerations of mechanistic aspects as well as short comments on the scope and limitations of the particular reaction under discussion. [Pg.235]

Some ten years later, Darwish and Braverman50,51 undertook a more extensive study of this rearrangement, which has revealed some unique features. These investigators examined the behavior of six different esters, namely allyl, crotyl, a-methylallyl, racemic and optically active a, y-dimethylallyl, cinnamyl and a-phenylallyl 2,6-dimethylbenzene-sulfinates under various reaction conditions. [Pg.670]

Incorporation of chiral units into polymers generates optically active polymers.27 Two types of optically active polymers could be obtained according to where the chiral units reside optically active polymers with chirality derived from chiral side chains and optically active polymers with chirality derived from tire chiral main chain. The circular dichroism (CD) measurement of 32, an optically active polymer with chiral side chains, showed that the chiral substituents have induced main-chain chirality. The induced main-chain chirality disappeared at higher temperature and appeared upon cooling. This type of chiral conjugated polymer is potentially useful in reversing optical recording28 ... [Pg.479]

Suitably Substituted Adamantanes. Adamantanes bearing four different substituents at the bridgehead positions are chiral and optically active, and 14, for example, has been resolved. This type of molecule is a kind of expanded tetrahedron and has the same symmetry properties as any other tetrahedron. [Pg.131]

When three, five, or any odd number of cumulative double bonds exist, orbital overlap causes the four groups to occupy one plane and cis-trans isomerism is observed. When four, six, or any even number of cumulative double bonds exist, the situation is analogous to that in the allenes and optical activity is possible. Compound 20 has been resolved. ... [Pg.134]

For a monograph, see Sokolov, V.I. Chirality and Optical Activity in Organometallic Compounds, Gordon and Breach NY, 1990. [Pg.822]

Allylic alcohols can be converted to epoxy-alcohols with tert-butylhydroperoxide on molecular sieves, or with peroxy acids. Epoxidation of allylic alcohols can also be done with high enantioselectivity. In the Sharpless asymmetric epoxidation,allylic alcohols are converted to optically active epoxides in better than 90% ee, by treatment with r-BuOOH, titanium tetraisopropoxide and optically active diethyl tartrate. The Ti(OCHMe2)4 and diethyl tartrate can be present in catalytic amounts (15-lOmol %) if molecular sieves are present. Polymer-supported catalysts have also been reported. Since both (-t-) and ( —) diethyl tartrate are readily available, and the reaction is stereospecific, either enantiomer of the product can be prepared. The method has been successful for a wide range of primary allylic alcohols, where the double bond is mono-, di-, tri-, and tetrasubstituted. This procedure, in which an optically active catalyst is used to induce asymmetry, has proved to be one of the most important methods of asymmetric synthesis, and has been used to prepare a large number of optically active natural products and other compounds. The mechanism of the Sharpless epoxidation is believed to involve attack on the substrate by a compound formed from the titanium alkoxide and the diethyl tartrate to produce a complex that also contains the substrate and the r-BuOOH. ... [Pg.1053]

Asymmetric reduction with very high ee values has also been achieved with achiral reducing agents and optically active catalysts. The two most important... [Pg.1200]

Salts of aliphatic or aromatic carboxylic acids can be converted to the corresponding nitriles by heating with BrCN or CICN. Despite appearances, this is not a substitution reaction. When R COO was used, the label appeared in the nitrile, not in the C02, and optical activity in R was retained. The acyl isocyanate... [Pg.1246]

These catalysts were first tested as resin-bound derivatives via HTS, first with metals and then without. Three libraries of chiral molecules, based on three different enantiomerically pure diamines, bulky salicylidene moities and optically active ii-amino acids were used for structure optimisation (Scheme 37 TBSCN = fBuMe2SiCN) [152]. [Pg.256]

L. D. Barron, Molecular light scattering and optical activity. Cambridge University Press, Cambridge, 2nd ed., 2004. [Pg.326]


See other pages where Optical activity and is mentioned: [Pg.184]    [Pg.116]    [Pg.103]    [Pg.475]    [Pg.47]    [Pg.229]    [Pg.76]    [Pg.494]    [Pg.98]    [Pg.132]    [Pg.57]    [Pg.329]    [Pg.1022]    [Pg.171]    [Pg.107]   
See also in sourсe #XX -- [ Pg.129 , Pg.762 ]

See also in sourсe #XX -- [ Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 ]

See also in sourсe #XX -- [ Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 ]

See also in sourсe #XX -- [ Pg.63 , Pg.64 , Pg.65 , Pg.66 , Pg.67 , Pg.68 , Pg.69 , Pg.70 , Pg.71 , Pg.72 , Pg.73 ]




SEARCH



Abscisic acid and its relatives—synthesis of optically active compounds

Chirality and optical activity

Chirality, Enantiomers and Optical Activity

Configuration and optical activity

Dipole moment and optical activity

Nonlinear optical activity and second harmonic generation

Optical Activity and Enantiomorphism

Optical activity and chemical reactions

Optical activity and chiral molecules

Optical activity and circular dichroism

Optical activity and synthesis

Optical birefringence and infrared activation

Optically Active 1-Hydroxyalkylphosphonates IVB and

Optically Active Oxiranes and Thiiranes

Passive and Active Optical Devices

Polymer Stereochemistry and Optical Activity

Stereocenters and optical activity

Stereoregular and/or optically active

The molecular polarizability and optical activity tensors

© 2024 chempedia.info